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The objective of this work is to derive a shock capturing tool able to treat turbu-
lence with minimum dissipation out of the shock for a large-eddy simulation (LES)
ofthe shock/turbulence interaction. The present numerical modeling of the shock/tur-
bulence interaction consists of a second-order finite volume central scheme using a
skew-symmetric form, a Jameson'’s type artificial dissipation, and the filtered struc-
ture function model. We focus on two areas to build simulations of increased accuracy:

e Anew sensor for triggering artificial dissipation is developed to perform LES
of the shock/turbulence interaction. This sensor is simple, local, and does not require
any a priori knowledge of the shock position. It is first tested in freely decaying
turbulence for both viscous and inviscid cases and in the inviscid 2D vortex/shock
interaction. It is shown that both shock capturing properties and standard LES results
in the case of freely decaying turbulence are recovered.

e Even though this modified sensor limits dissipation away from the shock,
it is shown that the dissipation used inside the shock affects turbulence when ed-
dies cross the shock region. This effect can be minimized by (1) refining the mesh
in the vicinity of the shock or (2) pre-filtering. The results obtained by mesh re-
finement are investigated for the inviscid shock/turbulence interaction in terms of
Reynolds stresses and kinetic energy variations accross the shock. A priori testing
shows that, with the proposed scheme and for all meshs considered, the dominant
dissipation acting on kinetic energy is the SGS dissipation away from the shock and
both artificial and SGS dissipation in the shock, the former being larger than the
latter. (© 1999 Academic Press
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1. INTRODUCTION

The interaction of shock waves and turbulence is common in high speed flows, :
of particular aerodynamic interest (buffeting, air intakes,...). Many studies and results
available on this subject, extending from experimental ([1-3] for interaction of turbule
boundary layer and shock) to theoretical [4, 5] and numerical fields [6—9]. As underlin
in Leeet al. [6], the general finding is that both shock and turbulence are modified duril
their interaction: the shock is corrugated, depending on the level of turbulence, wher
turbulence intensities and Reynolds stresses are amplified across the shock wave. As
turbulence length-scales are concerned, a general consensus arises considering that
scales are more amplified than the large ones, leading to a global decrease of the T
microscale (referred to as length scale, see [6] for details and [10, 11] for a contradict
debate).

For wall bounded flows, Reynolds average Navier—Stokes (RANS) equations may
used for flows where the shock does not induce separation [12, 13]. For separated fl
however, only unsteady calculations of shock/turbulence interaction may provide a reali
description of the flow. In this context, unsteady RANS can provide encouraging rest
as shown by Soefes [14] for strong buffeting occurring on an airfoil. However, standar
RANS models cannot describe turbulent field jumps through the shock and therefore
to be modified. Such simulations are developed with different motivations, focusing eitl
on the shock-capturing techniques [15], or on the description of large coherent struct
of turbulence via large-eddy simulation (see [16, 17]).

Another trend is to make use of dissipative numerical methods to treat both turbule
and strong discontinuities for unsteady applications: this leads to encouraging result
terms of turbulence modeling when using the piecewise parabolic method, for example
[18—20]) or the so-called monotonic integrated LES (MILES) approach. However, otf
studies comparing true SGS and numerical dissipation show that the latter overcome:
former one in some cases [21]: this may be due to the fact that classical shock-captu
schemes reduce to first order in the shock. Moreover, built-in numerical dissipatior
unable to vanish in near-wall regions as SGS dissipation does, which can be seen
major drawback of the MILES approach and may limit their applications to free shear flo
whereas the present method may be seen as more general.

Fundamental work on numerical simulation of the shock/grid-generated-turbulence in
action is now developing, the aim of which is to understand more precisely the mechani
by which turbulence interacts with shock waves. This is done through direct numeri
simulations (DNS) based on the complete resolution of the shock for relatively low incide
Mach numbers [7, 22, 13] or with shock capturing techniques [6]. High order schen
(typically compact schemes of 6th order) are commonly used for these DNS, for which
upstream Mach numbé; ranges from 1.05 to 2, the turbulent Mach numbkmbetween
0.05-0.102, and the turbulent Reynolds numRer between 84 and 240 for a Taylor mi-
croscale Reynolds numb&e_ between 6 and 20. The use of shock capturing techniqu
(sixth order ENO schemes [6]) allows increasig up to 3. For this latter work, turbulent
scales are simulated explicitly, whereas the shock is captured using a mesh size 7 t
larger (in the shock-normal direction) than the mesh size required to perform the equiva
DNS. For this work, Leet al.[6] and Mahestet al.[8] make use of the concept of “local
application of the ENO scheme,” which limits the application of the ENO scheme in tv
ways: first it applies only in a direction normal to the undisturbed shock and second i
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limited to a zone surrounding the shock which covers only 10% of the calculation dome
This may be done only because both the direction and the shock position are known a pi
This concept was necessary for two reasons: first to permit a cost reduction (the ENC
construction is computationally expensive) and second to limit the extra dissipation brou
up by the numerical dissipation inherent to the upwinding. These simulations recover
main features of shock/turbulence interaction, even if some discrepancies between li
interaction analysis (LIA) of Ribner [4] and numerical predictions appear, mainly due
viscous decay. An appropriate compensation makes these DNS results consistent wit
LIA approach [6, p. 233]. Despite the high-order of the method, dtes. [6] suggest that
the local refinement of the mesh in the direction normal to the shock is required in orde
describe the thermodynamic fluctuations due to the shock. We shall come back to this
hereafter.

A preparatory work toward LES of fundamental shock/turbulence interaction has be
also reported [23]. The underlying numerical method used for this work is again a lo
ENO scheme, together with the compressible dynamic model of [24]. However, if t
methodology followed by these previous works matches the classical numerical requiren
for LES (use of high order schemes, see [25, 26]), some aspects of the solution prop
prevent a direct extension to more complex geometries. First, these treatments will fail w
the shock is not aligned with the mesh, or when the shock moves. Second, the extensi
an intrinsically dissipative discontinuity capturing scheme may not be able to be generali
to the whole domain of calculation for LES [27], even if such high-order schemes clea
exhibit some subgrid scale model behaviour.

The primary objective of this work is to derive a numerical tool devoted to LES ¢
the shock/turbulence interaction for application in complex geometries: we address
problem of compatibility for a numerical scheme between sufficient dissipation in tl
shock to capture the discontinuity and minimum dissipation far from the shock (less tt
the eddy viscosity model). After a description of the subgrid scale parametrization retai
for these weakly compressible LES in Section 2, we present the numerical tool in Sectio
The results obtained for freely decaying isotropic compressible turbulence and for the
shock/vortex interaction are shown in Subsections 4.1 and 4.2, whereas those obtaine
the shock/turbulence interaction are described in Subsection 4.3. A priori tests on rele
numerical and SGS dissipations are provided in Subsection 4.4. These results are disct
in Section 5 where the importance of the ratio of the filter size to the smallest energt
turbulent scales is emphasized.

2. COMPRESSIBLE LES MODELING

The objective of the present study is to treat weakly compressible isotropic turbulenci
the presence of a strong discontinuity. We provide a brief review of the state of the art
compressible LES modeling before describing our method.

As recalled in Lele [28], compressibility effects on turbulence are measured by |
turbulent Mach numbeM; = ,/q/c, whereq is the turbulence kinetic energy aedhe
sound velocity, and by the ratio of compressible to solenoidal energythough a priori
tests conducted on DNS of compressible turbulence suggest that the contribution of
trace of the subgrid scale tensor may be neglected [29], other works propose a mode
this trace, either based on original work [30], or on an analog of Bardina’s model [31]
on the dynamic procedure of Germano [24]. In this last work, Moin and co-workers sh
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that, for high Reynolds numbers and turbulent Mach numbers adpwt0.3, the dynamic
coefficient brought up by the modeling of the trace of the subgrid scale tensor can exc
the dynamic coefficient obtained for its anisotropic part: this finding is followed by the fa
that the gradients of resolved pressure and of SGS kinetic energy are of the same ¢
[24, 32]. This result can be of great importance for the present study since it is known t
the pressure work is the main contributor to the increase of the turbulence kinetic ene
just downstream of the shock wave [7].

Despite these studies, we choose a subgrid scale modeling that does not take int
count the possible contribution of the trace of the subgrid scale tensor. This crude
eling has already produced good results over a similar range of turbulent Mach numlt
[33, 34] and we limit our work to turbulence at high Reynolds numbers and low turbule
Mach number ¥, ~ 0.075 upstream of the shock) away from shock regions. Moreove
following Morkovin's hypothesis, which is valid away from shock regions, this leads to
very weak level of compressible effects at small scale [35]. This will be confirmed by tl
very low level of the quantity (x) = v/ ©2(x)/+/w?(x) registered in these regions, which
measures the relative level of dilatation fluctuatief@®~ to the vorticity fluctuations/w?
(i.e., the relative level of compressible to incompressible velocity fluctuatibsgjng pro-
portional toy, see [36, 28]). In the region of the shock, the SGS dissipation will be shown
be overwhelmed by the numerical dissipation (see the end of the paper), leading to a we
importance of the model, at least for the present numerical procedure. Classical approa
for LES rely on the filtering of the fields by a filterdue to the mesh and the discretization
technique and a filter “ which stands for its Favre-filtering counterpart (see [24, 31, 32]).
filters implicitly involve a cutoff length scal&; ~ 2A, which classically corresponds to a
spectral cutoff wavenumbég ~ /A (A is a measure of the step size and could therefor
depend on locatiomy = A(x), and on direction). The resolved scales extend from the larg
(which scale with the domain size) to the smallést(,, of wavelengttk,,,,), which depend
on the local state of the flow and are limited by the local cutoff length scale of the mesh: «
getsL ., (X) > Ac(X). The numerical requirements to capture strong discontinuities le:
to the use of conservative variables pQi, p&) whereé= C, T+ it /2.

This leads to the following set of non-dimensional equations,

dp  9pl;
= =0 1
Jt * 3Xj ( )
apli  dplil; ap  auS; 9t
dpUi | 3pUl; 9P OnS; 9 @)
at 0X; X 0X; 0X;
o8 98l apt;  a(uSi — i) 9 oT 90
L_'_ 14 i_ p1+ (MSIJ |1)|+7 PR QJ’ ©)
ot an 3Xj 3Xj 8Xj 8Xj 8Xj

where the subgrid scale tensgr = —pli{i; + puiu;} and the subgrid scale vect@; =
—pCpl; T + pCpU; T require modeling. The set of equations is closed by setting
(1/3) mdij = —mSj (wt is a eddy viscosity), wher8; =[98 /0% + 88 /0x;—(2/3)(V -
iéijl, Qi= —ECvKt(a'f/axi) (x¢ is a eddy diffusivity), and by the modified filtered state
equationp=pRT (see [37, 34] for details). The explanations for the classical simpl
fications concerning the treatment of the filtered viscous terms in momentum and ene
egations and of the pressure-dilatation are givenin[29, 24]. Once again, we assume that
simplifications hold for regions far from the shock, the shock regions being dominated by
merical dissipation: this hypothesis will receive some support in Subsection 4.4. The mc
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chosen foru; is the filtered structure function model [38, 39]. For this mogegk= pv; is
evaluated as

n (X, t) = 0.0014C, "> A [Fa(x, A, 1)]¥?, (4)

whereF ,is a structure function evaluated on high pass filtered fieldgary= (Vol (x))*/3,
Vol(x) being the volume of the cell. The eddy diffusivity= v /Pr; is simply evaluated
through a constant value of the turbulent Prandtl nunftsgequal to 0.6, as recommended
in [40] for passive scalar. Although this approximation is neither supported by the hypo
esis of passive scalar for temperature in compressible turbulence, nor by the results of|
we chose it for its simplicity in this first approach.

3. NUMERICAL TOOL

The numerical platform employed for the simulation is routinely used for steady aerot
namic calculations of industrial interest and is the Navier—Stokes multi-block parallel fl
solver NSMB [41, 12]. For the present study where unsteady calculations are conside
the underlying numerical method consists of an explicit finite volume second-order cente
scheme, augmented with a blending of second- and fourth-order artificial dissipation [
for the space discretization. A four-stage Runge—Kutta scheme is used for time adva
ment. The code has been modified to take into account the subgrid scale modeling desc
in the previous section. The set of Egs. (1) to (3) is reformulated to make classical flu
Fi appear and reads

aU  aF; aF, dFs
_ 3 5
at dXq + 0Xo + 0X3 ( )

with
J =" (p. pli, pliz, pliz, pB), (6)
—pU;
—pti iy — P81+ (M S1 — 71
Fi=FU)= —pUi b — pdiz + (1) S2 — 72 . (7
ol Uz — 5&3"‘#(1:)33_173

|
<
—
i)
D
+
kel
~
+

(T )U SJ +)‘(T)ax —Ujm; — Qi

The standard Jameson’s scheme involves a humerical flux at the interface betwegn ce
andj +1

Ujp1+ U
Fisa=F (%) = dj112, (8)

where

djt12 = Gﬁ)l/z(ujﬂ -Uj) — 6}21/2(U1+2 —3Uj1+3U; —Uj ), )
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with

€112 = KPR 412%) 412, (10)

€i%1/2 = max(0.0, KR 12 — €[712). (11)
k@ andk™® are real numbers fixing the amount of diffusion brought up by the secon
and fourth-order dissipative operatofd; 1> is the spectral radius of the jacobian matrix

dF/0U at the cell facg + 1/2, measuring the anisotropic scaling factor of Swanson ar
Turkel [43]. ¥,1/2 is a sensor based on pressure fluctuations

U — Pj+1—2pj + Pj-1
! Pj+1+ 2Pj + Pj-1/
W12 = max(¥j, ¥ji1). (13)

(12)

The pertinence of the choice of a sensor based on the pressure gradient to treat s
discontinuities usually found in aerodynamics is discussed in [43]. Equations (5)—(13) re
to the classical Jameson scheme as described in [42]. It should be noted that the «
of the artificial dissipation is the same as the order of the SGS dissipation and that t
are non-linear, their non-linearities coming from coupling with either compressibility «
turbulent state of the flow. This is why both are needed: the SGS dissipation being unabl
sustain density and pressure discontinuities. It is admitted, within the LES community, t
representative LES require high-order schemes [25]. Although Ghosal’s analysis seen
disqualify second-order methods, it is worth noting that:

e Low order methods are common within applications in complex geometries, ev
for LES applications (see [44], for example).

e The presented skew-symmetric schemes are centered in nature, hence non-dissi
Therefore the dissipation brought up by the model is effective. This fact will clearly appe
under Results.

e Aliasing and dispersion errors, although being the potential cause of low qual
results, cannot be responsible for the problems we will deal with. In that respect, the pre:
problem and the proposed improvements will certainly hold for the use of an higher-or
centered scheme.

Eventually, the form we adopt differs from the standard purely centered schemes by tt
features:

e First, as suggested by the analysis of Swanson and Turkel [43], the previous typ
centered numerical method may be transformed into a TVD scheme by redefining the se
(13), considering a matrix dissipation model instead of a scalar one as described in Eqs
and (9), and setting the numbeP to a value switching from central to first-order upwind
scheme when second-order dissipation is activated. Although we keep a scalar dissip:
model, we take the valu® equal to 1.5 which can be considered as large. As notice
in [43], a typical value around 0.5 gives a global scheme close to a first-order upw
scheme in the case of the scalar equation provided is equal to 0.5. For the presented
test caseW values are typically around 0.15, which leadskt8 W ~ 0.075 for standard
k@ =0.5. This produces good results for stationary problems (RANS approach) but can |
to spurious oscillations in the shock region for the unsteady case. Empirically, we chec
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thatk® W ~ 0.25 (i.e., half the theoretical value recommended to get a true upwind scher
is sufficient to suppress the above mentionned oscillations. The corresponding véige for
is 1.5. Following [43], this ensures a nearly TVD-like scheme in regions of sharp press
gradient, and therefore offers the possibility to capture shocks without spurious oscillati
Fourth-order dissipation is used to damp high-frequency modes developing in all cente
schemes even in smooth regions of the fluid flow field [42, 43]. For the present study,
valuee® can be set to zero for two reasons. The first is that possible oscillations are dam
by the LES model because they develop at small scales. The second reason is given b

e Second, we detail some features of the chosen fluxes. Let us consider the non-li
equation

U aUy
ek A ) 14
ot T ax (14)

v andU are scalars. The conservative discretization of the k) = U v involved in
Eq. (14) in a finite volume method based on collocated variables leads to the semi-disc
equation

U Fip—Fi1p

1
ot Y 0, (15)

whereF; 1, is the flux at the interfacg 4 1/2 between cell§ andj + 1, equal toyU - S,

Shbeing the normal at the cell surface. Using the mean value of the fluxes to evajugie
one gets, in case of a regular mesh,

1 1
Fj+1/2 = E(Ujl/fj + Uj+11/fj+1) = E(Fj + Fj+1) (16)
1 1
Fj—1/2:E(Uj—ll//j—l‘f'uj'(/fj):é(':j—l‘i‘ Fi) (17)
Fj =Ujvy;. The projection of Eq. (15) or gives (withS- x/V = A1)

u n Ui — Yy

=0 18
ot 2AX ’ (18)

which is a semi-discrete equation of divergence form using a centered scheme of sec
order in space. When using the flux of the mean value, one gets

Fj+1/2 — F(U]+l/2) — ( J +2 J+l> <wJ +21/IJ+1> (19)
Uj_1+ U i— '
Fj—l/Z — F(U]—]_/Z) — ( J 12+ ] ) <I/IJ 12+ 1/,J ) (20)

which leads to

U 1/U; i1 —Uj_1v— 1 i+1— Vj—
_+_< J+11/fj+1 j 1!”] 1)+_Uj<¢’1+1 K[’J 1)

ot 2 2AX 2 2AX

1 Uj+l - Uj—l
Y "7tV —0 21
2 J( 2AX ) ’ (1)
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which is a semi-discrete equation using a skew-symmetric form of second-order. T
form is known to reduce the aliasing errors that are crucial in low-order non-dissipati
schemes and is thus recommended for LES (see [26, 32]). As pointed out in [45, 26],
skew-symmetric form is shown also to conserve kinetic energy for incompressible flo\
Another interesting point is that the skew-symmetric form of Eq. (21) is compatible wi
the conservative discretization of Eq. (15), a property of crucial importance to ensure
shock capturing capability of the scheme. The adaptation to compressible flowsuniih
terms is made by setting; (respectivelyy;) to plij (respectivelypl;) in the form (21),
the local fluxF;_1/» of Eq. (20) being divided by the mean density & pj1).

e Third, as suggested in many applications devoted to steady (see Swanson,
Turkel [43] and Crumpton and Shaw [46]) or unsteady flow calculations (see Mittal [47
there are strong motivations for reducing the second-order numerical dissipation use
capture discontinuities. Among them, the problem of shock wave representation is one 0
strongest. Usual procedures to improve this dissipation rely either on a better mathema
description of TVD properties of the scheme [43], or on possibilities of reducing the size
the flow regions where dissipation acts: this is done in a very pragmatic way in fundame
studies where the concept of local application of ENO schemes arises [6] or by addir
correction to the sensor described in Eq. (9). Classical solutions are the use of a qua
having the same functional dependence as entropy, or the multiplication of the scaling fa
by a monotonically increasing function of the local Mach number of the flow [43]. Thi
latter procedure has been extended by [46] who directly flagged what is defined as
“shock region” before running every Runge—Kutta step: the flag is set to one in cells t
are crossed by the shock front and to zero elsewhere.

As stressed by one of the referees, the Jameson scheme is no longer Galilean invariar
to the artificial viscosity, the range of values given for the coefficikfisk® being thus
valid for the shock frame of reference. Moreover, with corrections based on the local Me
number, the discretized set of equations contains a new source on non-Galilean invarie
We developed a new correction which conserves the Galilean invariant property of
sensor and exhibits a smooth correction, proportional to the level of local compressibil
A modified version of the Jameson’s sensor was obtained by multiplying the standard se|
W of Eq. (12) by the local functio® defined by

_ (V-u?
(VU2 4 (w)2+€’

(22)

wherew = V A is the resolved vorticity and= 103 is a positive real number chosen
to prevent numerical divergence in regions where Bdthu andw are zero. This function
varies between 0 for weakly compressible regions to about 1 in shock regions. The artifi
viscosity used with this “modified Jameson’s approach” is

@

€212 = kKPRit12%i112Pi 1172, (23)

where
VYit12®ir172 = max(¥; &, Wi 1Piy1), (24)

; is given by Egs. (13) an@; is simply a local evaluation of Eq. (22). Note that, even
though thed sensor of Eq. (22) is Galilean invariant and may be used in other numeric
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formulations, its use with the Jameson scheme still leads to a hon-Galilean invariant for
lation. Therefore, present results (for example, con&ht should be extrapolated only
in frames where shocks are steady.

4. RESULTS

The following numerical tests enable comparisons between numerical models for
steady calculations of compressible flows, all of them involving the second-order fir
volume centered scheme in the skew-symmetric form of Section 3.

For all simulations presented below, a dedicated table recalls the resolution, the va
of the coefficientk® andk®, the choice of the sensdr or W, and the eventual use of
the LES model (referred to as FSF for the previously mentioned LES modeling).

We present simulations for both infinite and finite Reynolds numbers. The Euler sin
lations allow us to evaluate the numerical method in an inviscid case, all the dissipat
being brought either by the artificial viscosity or/and by the SGS model. Experimental d
of Comte-Bellot and Corrsin (CBC) were used for comparisons.

4.1. Homogeneous Compressible Turbulence

Models are first tested without shock in freely decaying homogeneous compress
turbulence in a periodic square box. Nine simulations are performed for different co
binations of numerical and subgrid scale dissipation models (Table 1). For the first
simulations (referred from THI-1 to THI-6), the initial condition consists in a divergence
free velocity field, with uniform initial density and temperature fields. The energy of tt
initial purely solenoidal velocity field is contained in the large resolved scales and pe:
up atk; L ¢ = 3. For the three remaining simulations (referred from CBC-1 to CBC-3), tt
initial conditions consist of a divergence-free velocity field with the same three-dimensio
energy spectrum as in the Comte-Bellot and Corrsin experiment at the stagiod = 42
(see [48, 24)).

The resolution is low (39 but sufficient for the present goal. For the first four simulations
the kinetic energy spectia(k, t) fill up, showing transition to fully developed turbulence,

TABLE |
Parameters of Simulations for Three Dimensional Freely Decaying Isotropic
Turbulence in a Periodic Square Box Using 32Mesh Nodes

Simulation FSF model k2 k* Sensor
THI-1 Yes 0.0 0 No sensor
THI-2 Yes 1.5 0.02 ¥ (Eq.13)
THI-3 Yes 15 0 )
THI-4 Yes 15 0 W (Eqg. 24)
THI-5 No 0.0 0 No sensor
THI-6 No 1.5 0 [\
CBC-1 Yes 0.0 0 No sensor
CBC-2 Yes 15 0 o)\
CBC-3 Yes 15 0.02 1/

Note. THI-x refers to inviscid simulations: CB&-refers to the Comte-Bellot and Corrsin
experiment (see Subsection 4.1).
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1e-05 £ = isimulation THI-1; t =10
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FIG. 1. Kinetic energy spectra for simulations THI-1, THI-2, THI-3, and THI-4tat 10L ef/Uref and
t = 120L (ef/ Uyef. For simulation THI-6, &2 spectrum symptomatic of equipartition equilibrium develops.

as shown by the self-similar decay with a constant slope arkufifibr the spectra obtained
with the FSF model (simulation THI-1) (see Fig. 1). The simulation THI-5 diverges, showi
that the skew-symmetric form by itself is not sufficient to sustain such a simulation
compressible turbulence. Notice that, as the skew-symmetric form of the convective t
is shown to conserve energy in the incompressible limit (see [45]), such a simulation wo
be sustained for a truly incompressible regime. The spectrum for simulation THI-6 exhit
ak? shape, symptomatic of an equipartition equilibrium [40]: the second order dissipati
is able to prevent numerical divergence but not to play a role equivalent to a SGS mo
Figures 2 and 3 show the time evolutions over the whole domain of the mean kinetic ene
and enstrophy: all simulations with zero fourth-order dissipation exhibit an increase
enstrophy up to a critical timg*, close tot ~ 15Us/Le. This time is of the order of
the critical time of “enstrophy blow up” (identified as a maximum on Fig. 3) discussed
[40], t* ~ 5.9(30?(0))~Y/2, and in [49] for practical LES applicationt, ~ 4(3»?(0)) /2.
These evaluations correspond to 28 andd@L s in our case. The behaviour of energy
and enstrophy is anomalous for simulations THI-5 and THI-6, showing the necessity of
LES model.

The first four simulations are continued uritiz 10t*. For timet > t*, the mean kinetic
energy decreases with a-“ slope for simulations THI-1 to THI-4, in good agreement with
turbulence theories (see [40] for a review): this result is not very sensitive to the the natur
the dissipation. Figure 4 shows the time evolution of the turbulent Mach number, pressi
density, and temperature fluctuatiom (s, orms, Trms) fOr simulation THI-4. The turbulent
Mach number isM; ~ 0, 13 for O<t <t* and decreases down M; ~ 0.03 fort ~ 10t*.
After some oscillations due to initial conditionBys, orms, Trms decrease, showing that an
auto-similar state has beenreached. The [@ti(aﬂiv u?dy/ fv »?dV varies from @t = 0)
to 0.02 for self-similar decay, showing that the turbulence is weakly compressible.
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0.10 |
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e—e simulation THI-1
¥—v¥ simulation THI-2
*x—x simulation THI-3
O—4& simulation THI-4
—— simulation THI-5
— — simulation THI-6
--- reference t ' slope
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FIG. 2. Time evolution of kinetic energy fv u?/2dy for simulations THI-1 to THI-6.

The results obtained in simulation THI-1 with the FSF model will now be taken
reference for discussion.
The numerical scheme involving second- and fourth-order dissipation (simulation THI:
is clearly too dissipative: the kinetic energy level is reduced by more than a decade for sc
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FIG. 3. Time evolution of enstrophg fv »?dV for simulations THI-1 to THI-6.
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FIG. 4. Time evolution of turbulent Mach number, pressure, temperature, and density fluctuations for sir
lation THI-4.

of sizes about the cutoff length whereas the large scales are hardly affected (see discu
in Section 5 and Fig. 1). No satisfactory evolution of energy and enstrophy is obtained
clear improvement of the results is obtained when setting the fourth-order coefficien
zero (simulation THI-3); but even in this case the dissipation brought up by the classi
second order Jameson dissipation is large enough to perturb the role played by the sul
scale model. This is particularly obvious during the early time of evolution when kinet
energy at the cutoff; is negligible, and thus where the dissipation brought up by the FS
model is nearly zero.

Although the numerical dissipation (O(2) and O(4)) is sometimes used as a subgrid-s
model (it has indeed the same effects as a dissipative subgrid-scale model on the quar
observed here), it always brings a spurious dissipation, too large when the fourth orde
employed and too weak when the second order alone is employed. In consequence,
not able to mimic the dissipation of a true subgrid-scale model, and therefore is not v
adapted to LES. This conclusion is similar to the one provided by Gaghadr[50].

The application of modification (Eq. (22)) corrects these drawbacks and gives the s
results as the standard LES for simulation THI-4. Figure 5 shows the time evolution
(@)= [, ®@dV, (W)= [}, WdV, dms, Wms and of the correlation coefficient df andw.
Although the mean values and fluctuations of the classical sansi@crease as expected
for a self-similar decay, the mean value and the fluctuations of the correbtinorease.
The global senso® WV is shown to be small, which seems to be not only due to the lo\
values of each componefit and ¥, but also due to their relatively weak correlation (see
Figs. 5 and 6).

The three remaining simulations concern the Comte-Bellot Corrsin experiment. The |
tial velocity fields were provided by the Center for Turbulence Research and are descri
in [24]: they match the CBC experiment condition fgdp/M = 42. The thermodynamic
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FIG. 7. Time evolution of kinetic energy for simulations CBC-1, CBC-2, and CB-3,42M /U,.

state is adapted to géd; to 0.26, which is in the range of the turbulent Mach numbe
considered by Moirt al.[24]. Figures 7 and 8 display the time evolution of kinetic energy
normalized by its initial value and the kinetic energy spectra for a time that correspot
totUp/M =98, i.e.,t/to=2.33. The simulation CBC-1 (see Table | for parameters) pro
vides reasonable results: the error is about 20% on the energy predictipfiferd.07,

10 T T
10-240 i
¢ *
*
107 . 5
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& CBC
jo*° | = simulation CBC - 1 ¢
o——o simulation CBC - 2 ]
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107° : ettt . !
1 10 100
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FIG. 8. Kinetic energy spectra for simulations CBC-1, CBC-2, and CBC-3figy M =98.
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i.e., for the last station of CBC measurements.This result does not seem as good a
ones obtained by Moiet al. [24] using the dynamic model, although the dynamic mode
predicts an equilibrium value of the constant comparable to the value of Smagorin:
constant obtained using isotropic turbulence [24]. Considering the simulation CBC-1
reference, the simulations CBC-2 and CBC-3 show that the proposed modification is :
to maintain similar results (CBC-2) whereas the original Jameson scheme is not (CBC
The discrepancy between the CBC-1 and CBC-2 results is larger than between THI-1
THI-4: this seems due to the higher turbulent Mach number for the CBC cases. Althol
this could be seen as a limitation of the proposed numerical method, turbulent Mach n
bers around 0.25 are already representative of a wide range of applications for aeronat
purposes.

4.2. Two Dimensional Vortex-Shock Interaction

The effect of the proposed correction near a shock is now investigated by simulating
2D interaction of a vortex and a shock in a configuration described in Fig. 9: the me
flow is in thex-direction; periodic boundary conditions are applied inyhdirection. The
purpose of this test case is to compare the numerical results with simple analytical mo
of vortex amplification through the shock [8]: the main advantages of the 2D configul
tion being the lack of vortex stretching. The dimensions of the computational domain
(Lx, Ly) = (4, 1)L, att =0, aLamb—Oseen type vortex is centeregkat/) = (1, 0.5) L ref
and is convected by the mean flow (see Lamb [51, p. 592)).

Nine simulations are conducted. For the first six, the upstream Mach numdesid.2
to match the simulation of Lext al.[7]: this corresponds to an inlet velocity0f = 1.42U .
The maximum tangential velocity isT6U,¢, which can stand for a relatively high level of

AY Periodic boundary condition

M=1.2 : \\:
£ a0 1 X

Vortex Shock Free stream conditions

FIG.9. The 2D shock/turbulence interactiorap, sketch of the simulationmiddle, initial condition (Lamb—
Oseen vortex); iso-lines of vorticity and pressure show the respective positions of the vortex and theatharck.
the same lines show the modifications of shape of both vortex and shock contours (see Subsection 4.2).
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TABLE I
Parameters of Simulations for the Two Dimensional Vortex/Shock
Interaction (See Subsection 4.2)

Simulation (nx, ny) k2 k* Ny Sensor FSF model
VS-1 128x 16 1.5 0.02 8 v No
VS-2 256x 32 1.5 0.02 16 ' No
VS-3 512x 64 1.5 0.02 32 \J No
VS-4 128x 16 1.5 0 8 (o] No
VS-5 256x 32 1.5 0 16 [o2\) No
VS-6 512x 64 1.5 0 32 [o3\] No

Note.The resolutions are referred to as resolution 1 (respectively 2, 3) fox 1Brespec-
tively 256 x 32, 512x 64). The fifth columnV; indicates the number of points in the vortex
in the y-direction; twice as many points are used in fadirection.

equivalentturbulent Mach number. The parameters of these simulations are given in Tak
where we use either the classical Jameson'’s dissipation (second- and fourth-order dis
tion) or the modified Jameson one, for three different resolutions: for all simulations, 1
subgrid scale model is switched off. The number of points involved in the numerical
scription of the vortex is given for thg-direction: twice as many points are used in the
x-direction to resolve the vortex. Three other simulations are conducted using the param
of simulations VS-6, but with various inlet Mach numbék$; = 1.1, 1.4, and 1.7) in order
to check the sensitivity to upstream flow.

All simulations (and the ones presented in the next section) are performed in the fre
of the shock: the shock, originally placedxat L /2, is thus at rest in this frame and its
mean position does not change for the present laminar calculation.

Figure 9 displays isolines of pressure and vorticity during the interaction for simul
tion VS-4. After the shock, the vortex becomes elliptic, which is in agreement with Ll
predictions [4] and other numerical results [52].

Figure 10 gives the time evolution of the maximum@f»2(t) /w2(0) on the domain for
all simulations of Table Il. The expected results are a constant value before the shock-vc
interaction, an increase during the interaction and another constant level when the vc
is in the post-shock region. As stressed in Mahetsdil. [8] for incidence angles near zero,
this quantity is supposed to scale as

w2 P2 _Us (25)

w1 pr Uy’
wy (respectivelyw;) standing for post- (respectively pre-) shock position of the vortex
Additional tests at higher Mach numbers using the modified sensor are presented in Fig
Expected results are qualitatively and quantitatively recovered in all cases. However,
phenomena are worth noting.

The first concerns pre- and post-shock regions, where only the fourth-order dissipatio
the classical Jameson’s dissipation is supposed to act. A decrease of enstrophy is obs
in the pre-shock and/or post-shock regions for the simulations VS-1 and VS-2, show
the influence of the fourth-order dissipation as in the previous section. Simulations V.
and VS-6 show that well resolved scales are not affected by the fourth-order dissipat
Moreover, the distortion of the vortex in post-shock regions makes the pressure grad
steeper and enables the sensor of the classical second-order Jameson'’s dissipation to |
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FIG.10. Time evolution of the maximum O{/a)?(t)/wz(O) for the 2D shock/vortex interaction; long dashed

line, simulation VS-1; doted line, simulation VS-2; dot-dashed line, simulation VS;3imulation VS-4;$,
simulation VS-5,0), simulation VS-6.

larger dissipation than for the pre-shock region (simulation VS-2). For all cases, the propc

correction maintains a plateau for enstrophy in both the pre- and post-shock regions.
Second, the enstrophy growth through the shock is captured more precisely with incr

ing resolution and for a fixed resolution when applying thé& sensor. As previously

2.5 T T
>——+ Mach 1.1
&5—=A Mach 1.2
==& Mach 1.4
20 [ TTEeES® © e—oMach17
NE 1.5 - -
> EAAAA
% A
=
1.0 -
0-5 1 | L
0.0 0.5 1.0 1.5

time

FIG.11. Time evolution of the maximum o(/a)Z(t)/wZ(O) for parameters of simulation VS-6 fod; =1.1,
1.2,1.4,1.7. The curves have been displaced so that the dates of the shock/vortex interaction coincide for all |

numbers.
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underlined, an increased number of points results in steeper gradients and thus a I
production of enstrophy; this fact is already investigated in [7]. The sebdoincreases
this trend. Simulations confirm these conclusions for Mach numbers ranging from
to 1.7.

4.3. The 3D Shock-Turbulence Interaction
4.3.1. Parameters

The previous schemes are now tested in the case of the interaction between a weak
pressible turbulence and a shock. The mean flow is inxtdeection; periodic boundary
conditions are applied in thg- and z-directions. The configuration of the simulation is
described in Fig. 12 and is similar to the one treated in [7] except for the fact that 1
incident turbulence is not prescribed at the inlet through an adapted procedure for whict
spectrum is given [53] but through the direct input of LES fields obtained in Subsection -
and the use of Taylor's hypothesis: the same choice has been made by [8]. An exter
study of the validity of Taylor's hypothesis for compressible flow is proposed in [53]. Th
hypothesis is shown to be valid for the case treated here since the inlet turbulent M
numberM; is about 0.075 and the inlet turbulence intensity is (Qfg/ U1 ~ 0.06). The di-
mensions of the calculation domain &ts,, Ly, L) = (2, 1, 1)Lt The smallest resolved
kinetic energy scale of the incident turbulence is thys, = L /16 (see Section 2). The
resolution is(ny, nz) = (32, 32) points in both they- andz-directions to match the reso-
lution of the previous isotropic turbulence simulation. Three resolutions are usedn th
direction: the first is 64 points (which gives an isotropic giidd=dy=dz=L/32; itis
referred to as resolution 1, used for simulations ST-1 and ST-2). For simulations ST-3,
thex discretization is equivalent to the previous one for the inlet, then smoothly refined
to dx(i) ~ 1/8(L¢/32) just before the shock and for the rest of the domain (simulatior
ST-3, 4), or only in a region around the shock (simulation ST-5). For the chosen grid refi
ment, the ratio between the integral scale of the incoming turbulence and the mesh si:
the shock region is about half of the ratio between the vortex and the width of the mesh
the resolution 3 of the previous 2D cases (see Fig. 13). This suggests that the mesh for ¢
ST-3, 4, 5 is sufficient to describe properly the interaction of the more energetic structt

AY
v
X
\
Imposed Free stream
inlet conditions conditions

FIG. 12. Schematic diagram of the computational domain for simulations ST-1 to ST-5. Periodic conditic
are applied in the- andz-directions (see Subsection 4.3).
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FIG. 13. x distribution of the cell sizesix, dy, anddz in the x-, y-, and z-directions for simulations
ST-1, 2, 3, 4, 5. A dashed line markly anddz for all simulations;d, dx for resolution 1 (simulations ST-1
and ST-2),0), dx for resolution 2 (simulations ST-3 and ST-4), dx for resolution 3 (simulation ST-5). The
vertical line denotes the initial shock position.

with the shock, at least with the same accuracy as for the shock/vortex interaction previo
treated. This refinement is close to the solution used by [54] to recover DNS results wil
shock capturing technique. The parameters are summarized in Table Il for all simulatic
the FSF model is switched on. The problems of LES formulation on variable meshes w
neglected in the present work, which seems reasonable regarding the global order o
numerical method and the low stretching of the mesh [55]. However, independently of
problem of commutativity between filter and space derivatives, the strong change of cu
length in thex direction will have a crucial effect on the dynamic on vorticity dynamics (se
below).

The procedure to obtain statistics was inspired by the work of [53] and has been ada|
to LES fields, for which we forget the notation devoted to resolved moticstands now

TABLE Il
Parameters of Simulations for the Three Dimensional Shock/Turbulence
Interaction (See Subsection 4.3)

Simulation (nx, ny, nz) Grid k2 k* Sensor FSF model
ST-1 64x 32x 32 Isotropic 15 0.02 g Yes
ST-2 64x 32x 32 Isotropic 15 0 (o Yes
ST-3 262x 32x 32 Locally refined 15 0.02 14 Yes
ST-4 262x 32x 32 Locally refined 15 0 (g Yes
ST-5 156x 32x 32 Locally refined 15 0 i\ Yes

Note.The resolutions are referred to as resolution 1 (respectively 2, 3) fard4x 32 (respectively
262x 32x 32 and 156x 32 x 32).
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for f or—and ~ being reserved for spatial and time averages:

f(x) = ///f(xyzt)dtdzdy f(x) = POy, 20X Y, 2D (26)
Ly JLz :O(X Y,z 1)

and
f'y.zt=fxy.zt—fx, f'xy.zt=fxyzt)—fx. @7)

Mean streamwise fluctuations are then defined in a logical maﬂ(ve), f_”(x), etc. Once
a stationary state is reached, time sampling is performed ougg: 1P for simulations
ST-1, ST-2, and ST-5 and ovet Rt/ Ut for simulations ST-3 and ST-4.

4.3.2. Mean Flow Variables

Figures 14 and 15 show the distribution of the mean streamwise velocity, presst
and Mach number through the shock. As noticed in [56], mean variables obey modif
Rankine—Hugoniot jump conditions. The downstream values of the variables obtained in
turbulent case undergo slight over- or undershoots depending on the variables downstre:
the shock before relaxing to the laminar values. This fact is more pronounced for resolu
2 where the reduced grid spacing allows a more accurate description of the thermodyn:
fluctuations and the rise of steeper gradients: this fact will be discussed below.

4.3.3. Turbulent Kinetic Energy, Mach Number, and Reynolds Stresses

Let us define the Reynolds stress tensor by

Rjx,y,zt) = -”’lz L (28)

The turbulence kinetic energy is then definedibk, vy, z,t) = (1/2)(R11 + Rx2 + Ra3),

its mean streamwise value t@(x). Figures 16 and 17 show the evolution of the normal.
ized turbulence kinetic energy and of the turbulent Mach number for some simulations
Table Ill. As expected from the previous results obtained in freely decaying turbulen
only the modified®W¥ sensor is able to predict a correct decay of turbulence kinetic e
ergy for the pre-shock region, and this independently of the resolution ir-thesction.
The streamwise decrease of kinetic energy is compatible with the one found for homc
neous turbulence when using Taylor’s hypothesis (simulations ST-2 and ST-4). The stan
Jameson’s artificial viscosity exhibits a spurious dissipation (simulations ST-1 and ST-
The production oE(x) is larger in both the shock and the post-shock regions for resolutic
2 than for resolution 1.

The evolution of the turbulent Mach number exhibits the same treMgsdecreases
from M; ~ 0.075 at the inlet tdMl; between 0.061 (simulations ST-1 and ST-3) and 0.06
(simulations ST-2 and ST-4) just before the shock.

As observed in previous studies (see [6, 7, 13]), the isotropic flow becomes axisy
metric through the shock. This is shown by the streamwise distribution of the Reyno
stressesi’.-vi (X), obtained with the modified Jameson’s sensor (simulations ST-2 and ST
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FIG. 14. x distribution of mean steamwise velociiy(top) and mean pressupe(bottom) across the shock
wave for simulations ST-1, ST-2, and ST-4; dashed lines denote the laminar values satisfying Rankine—Hug
jump conditions3, simulation ST-1{), simulation ST-2%), simulation ST-4.

see Fig. 18): these results compare well with previously mentioned works. A quant
tive comparison for the intensity of the Reynolds stresses in the far field is proposec
Table 1V: LIA results are estimated from Leg al. [54]. The present results cover the in-
crease of Reynolds stresses arising between the pre-shock reginr-dnd (distant from

TABLE IV
Reynolds Stresses Growth through the Shock

Lee’s (93) LIA ST-2 ST-4 ST-5
A 19% 34% 25% 37% 41%
B 4.4% 10% 0% 6% 6%

Note. A= Ry;(postshoch/R;;(pre-shock B = Rx(postshoch/Rxx(pre-shoch.
Results of Leeet al. are estimated from Fig. 5 of [7]; LIA predictions are estimated
from Fig. 4 of [7] for far field.
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FIG.15. Thex distribution of mean Mach number for simulations ST-1, ST-2, and ST-4 with the same lege

as the previous figure.

the shock from approximatively one integral length-scale of the incident turbulence).
though LIA predictions are to be considered with care since the composition of the incid
turbulence is able to influence the results [8], presented results (for ST-4 and ST-5) agree
with previous ones, ST-2 results being clearly of lower quality. Lower predictions obtain
using DNS may be due to viscosity effects; such effects have been reported étyell ¢6].
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FIG. 16. Thex distribution of normalized turbulence kinetic energyx)/E(0) for stimulations ST-1-4.
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FIG. 17. Thex distribution of turbulent Mach numb&\ﬁt for simulations ST-1, 2, 4.

Lee et al. [7] investigate the budget of the mean kinetic energy equation and sh
that the pressure work and the viscous terms are the main contributors to the evolu
of kinetic energy outside the shock wave: as the Reynolds number is set to infinity, o
the subgrid-scale modeling and the artificial dissipation can contribute to dissipation. -
larger increase obtained with tlielr sensor and the refined mesh (simulations ST-4 an

—— R11 - simulation ST-4
- - - R22 - simulation ST-4
— - — R11 - simulation ST-2
----------- R22 - simulation ST-2
a——a R11 - simulation ST-5
v—= R22 - simulation ST-5

2.00 | -
e
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S
=
0.00 : ‘ :
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X

FIG. 18. Thex distribution of normalized Reynolds stressﬁ:s(x)/ R; (0) for stimulations ST-2, 4, 5.
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ST-5) confirms the weak dissipative properties of the present numerical method use
combination with grid refinement. Indeed the same numerical method used without ¢
refinement exhibits a weaker increase of Reynolds stresses behind the shock and lee
a non-physical behaviouR;, peaks before the minimum value Bf; both in the results
of [7] and in the present results obtained with the refined mesh (simulations ST-4, 5). T
is no longer true using the coarse grid (see Fig. 18, simulation ST-2). The present res
confirm that grid refinement leads to a proper description of pressure work and a limi
dissipation.

4.3.4. Vorticity

Figures 19 and 20 display the streamwise distribution of normalized vorticity fluctuatio
aT;E(x) J@?(0) andw?(X) /aTZZ(O). As already mentioned, the standard sensor used to trigg
Jameson’s dissipation predicts a spurious decay of vorticity, even before the shock reg
This non-physical behaviour is corrected by means ofdtle sensor. Although previous
studies (LIA and DNS results) suggest that the streamwise comp@_ﬁéﬂhardly affected
across the shock, this tendency is recovered only for simulations ST-1, 3, 4, 5 and no
ST-2: the use of modified Jameson’s dissipation together with a non-refined mesh exh
a decrease af)_/x2 through the shock. The amplification of the transverse compcw_gériﬂ;
predicted with different intensities for all simulations (85% for ST-4, 80% for ST-5, from 6
to 80% depending on the incident turbulent Reynolds numbers for [6], and around 80%
LIA prediction extrapolated from Fig. 8 of [6]). This is compatible with the results of Le
et al.[6]. Although the dynamic of enstrophy does not follow the same rules for 3D cas
as in 2D cases, it may be underlined that the registered vorticity increase approxima
scales on the density ratio for this low Mach number case. In the present LES, coarse
results suggest that no grid refinement leads to a monotonic decay of both transverse

T T T
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T 040
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X

FIG. 19. The x distribution of normalized fluctuations vorticity componesg(x)/«2(0) for simulations
ST-1-5.
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FIG. 20. The x distribution of normalized fluctuations vorticity componesi(x)/w?(0) for simulations
ST-1-5.

streamwise components and to erroneous results through the shock. The simulation S
able to produce correct results through the shock together with a more or less monot
decay of vorticity components. This is no longer the case for the resolution 2 (simulatic
ST- 3and ST-4), for which both streamwise and transverse components of vorticity incre,
Although the method used to refine the grid around the shock region is not unique and |
change the result, this suggests that the convection of very high Reynolds number (in
infinite) turbulence from an isotropic to an anisotropic more refined grid is responsible
the enstrophy increase far from the shock. This allows energy to cascade from the cl
wavenumbekq ~ 32/ L s to Ko & 8% 32/ L s and induces an increase of enstrophy, whicl
is not connected with the present shock interaction problem but is related to turbule
dynamics (see Subsection 4.1). This phenomenon seems more intense yoarhe
components as the mesh refinement is acting directly on them (thiatsgl), whereas
little effect is seen for th& componentd/dy anda/dz are unchanged even in the refined
meshes.)

4.4. A Posteriori Test on the Modified Sensor

Figures 21 and 22 show the streamwise evolution of the components of the corrégtion
Eq. (22)) applied to the standard Jameson sewsdrhe analysis deals with the fields ob-
tained from simulations ST-2 and ST-4. The hypothesis of weakly compressible turbule
is clearly supported by the low level of dilatation compared to enstrophy. As mention:
the level of enstrophy in the post-shock region is larger for resolution 2 (simulation ST-
The width of the region covered by the non-zero dilatation field is to be connected with
instantaneous corrugation of the shock and with the slow drift of the mean shock posi
[6]. Moreover, the larger prediction of the dilatation for resolution 2 may be due to a stee|
shock.
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FIG. 21. The x distribution of the components?(x) and (divu)?(x) of the correctiond applied to the
Jameson’s standard sendofor simulations ST-2 and ST-4 (log-linear plot).

Figure 23 provides three isosurfaces of the instantaneous corrdciidmained for the
simulation ST-2. The lowest level chosen fbselects small scales and theoretically allows
some dissipation: however, the weak level of correlation betweand¥ away from shock
regions (see Subsection 4.1) leads to low value®Wfand strongly limits second-order
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FIG. 22. Thex distribution of the correctio@(x) applied to the Jameson’s standard sensor for simulation.
ST-2 and ST-4.
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FIG. 23. Instantaneous isosurfaces ®ftaken for simulation ST-2b = 0.1 (top), ® =0.5 (medium), and
® =0.8 (bottom). The mean flow goes from front to the rear.

dissipation. The selection of higher valu@s-£ 0.5 and® = 0.8) shows the ability of the
sensor to select the shock region and even to reduce the standard Jameson sensol
(there are some holes in the isosurfdce- 0.8).

Figure 24 compares the standard subgrid scale dissipation acting on kinetic ene
(€sgs= — Tjj S j) to the second-order dissipation with and without correc@oi he fourth-
order dissipation has not been used here. The whole domain can be split into two parts
first one is the non-shocked regions wheggdominates but where the dissipation coming
from the standard second-order can be non-negligible (around 10%). The proposed
rection is able to get rid of this problem and sets the second-order dissipation contribu
to a negligible level in such regions. These conclusions hold for regions where the ¢
is refined. The second part consists of the shocked region whglie dominated by the
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X
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FIG. 24. Thex distribution of kinetic energy dissipation coming from both subgrid scale modeljpand
artificial viscosity with and without modified sensor (taken from simulations ST-2 and ST-5).

numerical dissipation, leading to a weak influence of the subgrid scale modeling in si
regions, at least for the numerical scheme used here.

5. DISCUSSION

The previous results can be used to explain the role of the different dissipations invol
in these simulations.

1. Fourth-order dissipation. In the region out of the shock, the only dissipation is pro-
vided either by the subgrid scale model or by the second and/or the fourth-order term
of Jameson’s dissipation, depending on the use of the correction (22). Assuming tha
dissipative operators take the same form for compressible and incompressible flows
now consider an equivalent incompressible flow, for which the equation of conservatior
kinetic energy in spectral space reads, for the present numerical method,

4
(aat + 2uk? + 2¢PK? 4 2e<4>';2> E(k,t) = T*¥k (K, t). (29)
C

Tkke(k, t) stands for the triple-velocity correlation coming from resolved non-linear ir
teractions (see [40], for example). A more adapted equation for kinetic energy in spec
space can be found in [30] for compressible flows but it leads to the same discussion.
dissipation acts likerk?E (k, t), e Pk?E (K, t), ande Wk*E (k, t), which explains why the
use of the fourth-order dissipation is so crucial for small scales damping and can rap
lead to an over-dissipative behaviour when the coefficient is a priori fixed as it is the ¢
for Jameson’s artificial dissipation. An interpretation of high-order dissipative operators
terms of subgrid scale modeling is proposed by [39] within the formulation in physic
space of a spectral eddy viscosity accounting for a cusp behavioukfiear
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2. Standard Jameson’s dissipatiorilhe use of an arbitrary dissipative numerical methoc
(the standard Jameson’s artificial viscosity for the present study) can lead to a fairly g
picture of the flow (increase of energy, of transverse vorticity fluctuations and continuity
streamwise vorticity fluctuations through the shock). But this picture is not correct far frc
the shock where the large artificial dissipation affects turbulence more than the subgrid s
model, leading to a wrong prediction of kinetic energy dissipation, as shown by simulat
ST-1 and as confirmed by a priori testing.

3. Modified Jameson’s dissipation on uniform meshhe use of the sensaV¥ to
recover a reliable prediction of kinetic energy decay of turbulence out of the shock le:
to better results but may encounter some anomalous reduction of the streamwise vort
component through the shock (see Fig. 19).

This may be explained by the numerical treatment of the different scales involved in t
flow: the relevant physical scales are the turbulent scales and thexsttade character-
izes the width of the shock. Turbulent scales extend from large scales (sizelahoait
for all simulations) to the smallest resolved ones of sizg,Ix) (see Section 2). In the
shock region, the dominant dissipation is provided by the second-order term of James
dissipation, which enables us to capture the shock within typically three points, lead
to L ~ A for simulations ST-1 and ST-2. Consequently, for all simulations allowing th
smallest resolved energetic scaleg,, of size aboutA. to reach the shock region, the
second-order dissipation acting on scales of sizéll affect the flow: this leads to lower
increase of kinetic energy;i , w2 components and to a reduction of the streamwise vo
ticity component through the shock. This is the case for the simulation ST-2, for whi
Luvw ~ AR Ac~ Let/16.

The other simulations (ST-1, 3, 4, 5) do not allow this to happen because the size of
smallest incident turbulent structures is larger than the width of the shock for all of ther

For simulation ST-1, the use of a standard Jameson’s dissipation induces a strong
physical reduction of the kinetic energy at small scales before reaching the shock reg
We have seen that the reduction of the kinetic energy for the scales of size sbaut
more than a decade when compared to simulations performed with the modified sel
(see Subsection 4.1). Consequently, the second-order dissipation acts slightly on s
resolved energetic scales in the pre-shock region. Figure 25 displays a cut of instantan
streamwise and transverse components of vorticity for simulation ST-1: nearly no cha
in size and intensity of the scales is visible for the two components. The size of the sma
scales is clearly larger than the width of the shock. This simulation contains only wea
energetic small scales near the cutoff length seale

4. Modified Jameson’s dissipation on refined mesfigure 26 displays the same vari-
ables as Fig. 25 for simulation ST-4: only a little change of intensity can be seen fof the
component whereas the intensity@fincreases through the shock and some structures
smaller scales appear in the post-shock region.

Simulation ST-4 benefits from a grid refinement that allows a “numerical” separati
between the smallest resolved scales of the turbulent matign, ~ L;/16) and the
width of the local shockX~ 3dx(x) ~ 3/(8 x 32) L ). This leads first to limited damping
of the smallest scales through the shock and second to a larger increase of vorticity, di
the occurrence of steeper gradients.

Afinalimportant point may be made when discussing the solution adopted for simulatic
ST-4, 5. Indeed, the previous separation of scale is clearly due to the fact that the
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FIG. 25. Instantaneous cut of the streamwisg (top) and of the transverse, (bottom) vorticity field for
simulation ST-1. Isopressure lines show the instantaneous position of the shock. Mean flow goes from lefttor
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FIG. 26. Instantaneous cut of the streamwisg (top) and of the transverse, (bottom) vorticity field for
simulation ST-4. Isopressure lines show the instantaneous position of the shock. The mean flow goes from I
right.
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refinementtakes place just before the shocked region, inalocation that does not allow en
time for the convected turbulence to modify the range of scales contained in the turbu
motion. Should the grid refinement take place sooner, then the energy would cascac
smaller scales and cover all the spectrum available. This would generate enstrophy, folloy
the same mechanism as the one seen in Subsection 4.1 and for the post-shock regi
simulation ST-4. This effect is all the more intense here as the Reynolds number is infir
but the same tendency is to be expected from all high Reynolds number applications.
general procedures may improve the method: the first is the use of local automatic
refinement procedures (which would produce a quality of results equivalent to the o
obtained with ST-5) and the second is the use of pre-filtering procedures for LES. Wi
pre-filtering the resolved fields to a chosen cut-off length scale larger than the character
width of the shock, no energetic scales of size about the width of the shock can entet
shock region and be dissipated by the second-order artificial viscosity.

6. CONCLUSION

We investigated the problem of high Reynolds number large-eddy simulations of |
shock/turbulence interaction.

A skew-symmetric form of a finite volume Jameson type scheme of second-order accul
was given. As the second- and fourth-order artificial dissipation terms involved in this ty
of schemes are too large to be applied with success for LES, the fourth-order artifi
dissipation was suppressed (the LES model being able to get rid of small scales oscillati
and a new sensor based on the local property of compressibility of the flow was construc

This sensor allows the global scheme to capture the shock and to predict a right de
of turbulence kinetic energy in regions out of the shock. Moreover, the proposed ser
is shown to be frame independent, easy to implement in a parallel code, and relati
costless.

From a physical point of view, the simulations show the same trends as already publis
results for moderate Reynolds numbers. From a quantitative point of view, the incre
of Reynolds stresses and vorticity fluctuations is slightly higher in our case than in forn
published results, which may be due to the absence of molecular viscosity and to the red
numerical dissipation.

The necessity of grid refinement, already employed by [6], is shown to be directly cc
nected with the ability to separate the smallest resolved scales of turbulence and the s
affected by the numerical dissipation used to capture the shock. This highlights the prob
of simulating shock/turbulence interactions with energetic scales of sizes up to the cut
length of the mesh.,,,, without encountering the problem of local decrease of the con
ponent of vorticity normal to the shock. This conclusion is taken from simulations usi
second order methods and may be modified when using higher order numerical sche
allowing a more accurate description of smallest resolved scales and shock corrugatio
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