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The objective of this work is to derive a shock capturing tool able to treat turbu-
lence with minimum dissipation out of the shock for a large-eddy simulation (LES)
of the shock/turbulence interaction. The present numerical modeling of the shock/tur-
bulence interaction consists of a second-order finite volume central scheme using a
skew-symmetric form, a Jameson’s type artificial dissipation, and the filtered struc-
ture function model. We focus on two areas to build simulations of increased accuracy:

• A new sensor for triggering artificial dissipation is developed to perform LES
of the shock/turbulence interaction. This sensor is simple, local, and does not require
any a priori knowledge of the shock position. It is first tested in freely decaying
turbulence for both viscous and inviscid cases and in the inviscid 2D vortex/shock
interaction. It is shown that both shock capturing properties and standard LES results
in the case of freely decaying turbulence are recovered.

• Even though this modified sensor limits dissipation away from the shock,
it is shown that the dissipation used inside the shock affects turbulence when ed-
dies cross the shock region. This effect can be minimized by (1) refining the mesh
in the vicinity of the shock or (2) pre-filtering. The results obtained by mesh re-
finement are investigated for the inviscid shock/turbulence interaction in terms of
Reynolds stresses and kinetic energy variations accross the shock. A priori testing
shows that, with the proposed scheme and for all meshs considered, the dominant
dissipation acting on kinetic energy is the SGS dissipation away from the shock and
both artificial and SGS dissipation in the shock, the former being larger than the
latter. c© 1999 Academic Press
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1. INTRODUCTION

The interaction of shock waves and turbulence is common in high speed flows, and
of particular aerodynamic interest (buffeting, air intakes,...). Many studies and results are
available on this subject, extending from experimental ([1–3] for interaction of turbulent
boundary layer and shock) to theoretical [4, 5] and numerical fields [6–9]. As underlined
in Leeet al. [6], the general finding is that both shock and turbulence are modified during
their interaction: the shock is corrugated, depending on the level of turbulence, whereas
turbulence intensities and Reynolds stresses are amplified across the shock wave. As far as
turbulence length-scales are concerned, a general consensus arises considering that small
scales are more amplified than the large ones, leading to a global decrease of the Taylor
microscale (referred to as length scale, see [6] for details and [10, 11] for a contradictory
debate).

For wall bounded flows, Reynolds average Navier–Stokes (RANS) equations may be
used for flows where the shock does not induce separation [12, 13]. For separated flows,
however, only unsteady calculations of shock/turbulence interaction may provide a realistic
description of the flow. In this context, unsteady RANS can provide encouraging results
as shown by Soul`eres [14] for strong buffeting occurring on an airfoil. However, standard
RANS models cannot describe turbulent field jumps through the shock and therefore are
to be modified. Such simulations are developed with different motivations, focusing either
on the shock-capturing techniques [15], or on the description of large coherent structures
of turbulence via large-eddy simulation (see [16, 17]).

Another trend is to make use of dissipative numerical methods to treat both turbulence
and strong discontinuities for unsteady applications: this leads to encouraging results in
terms of turbulence modeling when using the piecewise parabolic method, for example (see
[18–20]) or the so-called monotonic integrated LES (MILES) approach. However, other
studies comparing true SGS and numerical dissipation show that the latter overcomes the
former one in some cases [21]: this may be due to the fact that classical shock-capturing
schemes reduce to first order in the shock. Moreover, built-in numerical dissipation is
unable to vanish in near-wall regions as SGS dissipation does, which can be seen as a
major drawback of the MILES approach and may limit their applications to free shear flows
whereas the present method may be seen as more general.

Fundamental work on numerical simulation of the shock/grid-generated-turbulence inter-
action is now developing, the aim of which is to understand more precisely the mechanisms
by which turbulence interacts with shock waves. This is done through direct numerical
simulations (DNS) based on the complete resolution of the shock for relatively low incident
Mach numbers [7, 22, 13] or with shock capturing techniques [6]. High order schemes
(typically compact schemes of 6th order) are commonly used for these DNS, for which the
upstream Mach numberM1 ranges from 1.05 to 2, the turbulent Mach numberMt between
0.05–0.102, and the turbulent Reynolds numberRet between 84 and 240 for a Taylor mi-
croscale Reynolds numberReλ between 6 and 20. The use of shock capturing techniques
(sixth order ENO schemes [6]) allows increasingM1 up to 3. For this latter work, turbulent
scales are simulated explicitly, whereas the shock is captured using a mesh size 7 times
larger (in the shock-normal direction) than the mesh size required to perform the equivalent
DNS. For this work, Leeet al. [6] and Maheshet al. [8] make use of the concept of “local
application of the ENO scheme,” which limits the application of the ENO scheme in two
ways: first it applies only in a direction normal to the undisturbed shock and second it is
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limited to a zone surrounding the shock which covers only 10% of the calculation domain.
This may be done only because both the direction and the shock position are known a priori.
This concept was necessary for two reasons: first to permit a cost reduction (the ENO re-
construction is computationally expensive) and second to limit the extra dissipation brought
up by the numerical dissipation inherent to the upwinding. These simulations recover the
main features of shock/turbulence interaction, even if some discrepancies between linear
interaction analysis (LIA) of Ribner [4] and numerical predictions appear, mainly due to
viscous decay. An appropriate compensation makes these DNS results consistent with the
LIA approach [6, p. 233]. Despite the high-order of the method, Leeet al. [6] suggest that
the local refinement of the mesh in the direction normal to the shock is required in order to
describe the thermodynamic fluctuations due to the shock. We shall come back to this point
hereafter.

A preparatory work toward LES of fundamental shock/turbulence interaction has been
also reported [23]. The underlying numerical method used for this work is again a local
ENO scheme, together with the compressible dynamic model of [24]. However, if the
methodology followed by these previous works matches the classical numerical requirement
for LES (use of high order schemes, see [25, 26]), some aspects of the solution proposed
prevent a direct extension to more complex geometries. First, these treatments will fail when
the shock is not aligned with the mesh, or when the shock moves. Second, the extension of
an intrinsically dissipative discontinuity capturing scheme may not be able to be generalized
to the whole domain of calculation for LES [27], even if such high-order schemes clearly
exhibit some subgrid scale model behaviour.

The primary objective of this work is to derive a numerical tool devoted to LES of
the shock/turbulence interaction for application in complex geometries: we address the
problem of compatibility for a numerical scheme between sufficient dissipation in the
shock to capture the discontinuity and minimum dissipation far from the shock (less than
the eddy viscosity model). After a description of the subgrid scale parametrization retained
for these weakly compressible LES in Section 2, we present the numerical tool in Section 3.
The results obtained for freely decaying isotropic compressible turbulence and for the 2D
shock/vortex interaction are shown in Subsections 4.1 and 4.2, whereas those obtained for
the shock/turbulence interaction are described in Subsection 4.3. A priori tests on relative
numerical and SGS dissipations are provided in Subsection 4.4. These results are discussed
in Section 5 where the importance of the ratio of the filter size to the smallest energetic
turbulent scales is emphasized.

2. COMPRESSIBLE LES MODELING

The objective of the present study is to treat weakly compressible isotropic turbulence in
the presence of a strong discontinuity. We provide a brief review of the state of the art for
compressible LES modeling before describing our method.

As recalled in Lele [28], compressibility effects on turbulence are measured by the
turbulent Mach numberMt =√q/c, whereq is the turbulence kinetic energy andc the
sound velocity, and by the ratio of compressible to solenoidal energyχ . Although a priori
tests conducted on DNS of compressible turbulence suggest that the contribution of the
trace of the subgrid scale tensor may be neglected [29], other works propose a model for
this trace, either based on original work [30], or on an analog of Bardina’s model [31] or
on the dynamic procedure of Germano [24]. In this last work, Moin and co-workers show
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that, for high Reynolds numbers and turbulent Mach numbers aboutMt ≈ 0.3, the dynamic
coefficient brought up by the modeling of the trace of the subgrid scale tensor can exceed
the dynamic coefficient obtained for its anisotropic part: this finding is followed by the fact
that the gradients of resolved pressure and of SGS kinetic energy are of the same order
[24, 32]. This result can be of great importance for the present study since it is known that
the pressure work is the main contributor to the increase of the turbulence kinetic energy
just downstream of the shock wave [7].

Despite these studies, we choose a subgrid scale modeling that does not take into ac-
count the possible contribution of the trace of the subgrid scale tensor. This crude mod-
eling has already produced good results over a similar range of turbulent Mach numbers
[33, 34] and we limit our work to turbulence at high Reynolds numbers and low turbulent
Mach number (Mt ≈ 0.075 upstream of the shock) away from shock regions. Moreover,
following Morkovin’s hypothesis, which is valid away from shock regions, this leads to a
very weak level of compressible effects at small scale [35]. This will be confirmed by the
very low level of the quantity4(x)=√2′2(x)/

√
ω′2(x) registered in these regions, which

measures the relative level of dilatation fluctuations
√
2′2 to the vorticity fluctuations

√
ω′2

(i.e., the relative level of compressible to incompressible velocity fluctuations,4 being pro-
portional toχ , see [36, 28]). In the region of the shock, the SGS dissipation will be shown to
be overwhelmed by the numerical dissipation (see the end of the paper), leading to a weaker
importance of the model, at least for the present numerical procedure. Classical approaches
for LES rely on the filtering of the fields by a filterdue to the mesh and the discretization
technique and a filter ˜ which stands for its Favre-filtering counterpart (see [24, 31, 32]). The
filters implicitly involve a cutoff length scale1c≈ 21, which classically corresponds to a
spectral cutoff wavenumberkc≈π/1 (1 is a measure of the step size and could therefore
depend on location,1=1(x), and on direction). The resolved scales extend from the larger
(which scale with the domain size) to the smallest (Luvw, of wavelengthkuvw), which depend
on the local state of the flow and are limited by the local cutoff length scale of the mesh: one
getsLuvw(x)≥1c(x). The numerical requirements to capture strong discontinuities lead
to the use of conservative variables ( ¯ρ, ρ̄ũi , ρ̄ẽ) whereẽ=Cv T̃ + ũi ũi /2.

This leads to the following set of non-dimensional equations,

∂ρ̄

∂t
+ ∂ρ̄ũ j

∂xj
= 0 (1)

∂ρ̄ũi

∂t
+ ∂ρ̄ũi ũ j

∂xj
= − ∂ p̄

∂xi
+ ∂µS̃i j

∂xj
− ∂τi j

∂xj
(2)

∂ρ̄ẽ

∂t
+ ∂ρ̄ẽũ j

∂xj
= −∂ p̄ũ j

∂xj
+ ∂(µS̃i j − τi j )ũi

∂xj
+ ∂

∂xj

(
λ
∂ T̃

∂xj

)
− ∂Qj

∂xj
, (3)

where the subgrid scale tensorτi j =−ρ̄ũi ũ j + ρui u j and the subgrid scale vectorQj =
−ρ̄Cpũ j T̃ + ρCpu j T require modeling. The set of equations is closed by settingτi j −
(1/3)τkkδi j =−µt S̃i j (µt is a eddy viscosity), wherẽSi j = [∂ũ j /∂xi +∂ũi /∂xj−(2/3)(∇ ·
ũ)δi j ], Qi =−ρ̄Cvκt (∂ T̃/∂xi ) (κt is a eddy diffusivity), and by the modified filtered state
equation p̄= ρ̄RT̃ (see [37, 34] for details). The explanations for the classical simpli-
fications concerning the treatment of the filtered viscous terms in momentum and energy
eqations and of the pressure-dilatation are given in [29, 24]. Once again, we assume that these
simplifications hold for regions far from the shock, the shock regions being dominated by nu-
merical dissipation: this hypothesis will receive some support in Subsection 4.4. The model
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chosen forµt is the filtered structure function model [38, 39]. For this model,µt = ρ̄νt is
evaluated as

νt (x, t) = 0.0014C−3/2
K 1(x)[ F̃2(x,1, t)]1/2, (4)

whereF̃2 is a structure function evaluated on high pass filtered fields and1(x)= (Vol(x))1/3,
Vol(x) being the volume of the cell. The eddy diffusivityκt = νt/Prt is simply evaluated
through a constant value of the turbulent Prandtl numberPrt equal to 0.6, as recommended
in [40] for passive scalar. Although this approximation is neither supported by the hypoth-
esis of passive scalar for temperature in compressible turbulence, nor by the results of [24],
we chose it for its simplicity in this first approach.

3. NUMERICAL TOOL

The numerical platform employed for the simulation is routinely used for steady aerody-
namic calculations of industrial interest and is the Navier–Stokes multi-block parallel flow
solver NSMB [41, 12]. For the present study where unsteady calculations are considered,
the underlying numerical method consists of an explicit finite volume second-order centered
scheme, augmented with a blending of second- and fourth-order artificial dissipation [42]
for the space discretization. A four-stage Runge–Kutta scheme is used for time advance-
ment. The code has been modified to take into account the subgrid scale modeling described
in the previous section. The set of Eqs. (1) to (3) is reformulated to make classical fluxes
Fi appear and reads

∂Ū

∂t
= ∂ F̄1

∂x1
+ ∂ F̄2

∂x2
+ ∂ F̄3

∂x3
(5)

with

Ū = T (ρ̄, ρ̄ũ1, ρ̄ũ2, ρ̄ũ3, ρ̄ẽ), (6)

F̄ i = Fi (Ū ) =



−ρ̄ũi

−ρ̄ũi ũ1− p̄δi 1+ µ(T̃)S̃i 1− τi 1

−ρ̄ũi ũ2− p̄δi 2+ µ(T̃)S̃i 2− τi 2

−ρ̄ũi ũ3− p̄δi 3+ µ(T̃)S̃i 3− τi 3

−ũi (ρ̄ẽ+ p̄)+ µ(T̃)ũ j S̃i j + λ(T̃) ∂ T̃
∂xj
− ũ j τi j − Qi


. (7)

The standard Jameson’s scheme involves a numerical flux at the interface between cellsj
and j + 1

Fj+1/2 = F

(
U j+1+U j

2

)
− dj+1/2, (8)

where

dj+1/2 = ε(2)j+1/2(U j+1−U j )− ε(4)j+1/2(U j+2− 3U j+1+ 3U j −U j−1), (9)
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with

ε
(2)
j+1/2 = k(2)R j+1/29 j+1/2, (10)

ε
(4)
j+1/2 = max

(
0.0, k(4)R j+1/2− ε(2)j+1/2

)
. (11)

k(2) andk(4) are real numbers fixing the amount of diffusion brought up by the second-
and fourth-order dissipative operators.R j+1/2 is the spectral radius of the jacobian matrix
∂F/∂U at the cell facej + 1/2, measuring the anisotropic scaling factor of Swanson and
Turkel [43].9 j+1/2 is a sensor based on pressure fluctuations

9 j =
∣∣∣∣ p̄ j+1− 2p̄ j + p̄ j−1

p̄ j+1+ 2p̄ j + p̄ j−1

∣∣∣∣, (12)

9 j+1/2 = max(9 j , 9 j+1). (13)

The pertinence of the choice of a sensor based on the pressure gradient to treat shock
discontinuities usually found in aerodynamics is discussed in [43]. Equations (5)–(13) refer
to the classical Jameson scheme as described in [42]. It should be noted that the order
of the artificial dissipation is the same as the order of the SGS dissipation and that both
are non-linear, their non-linearities coming from coupling with either compressibility or
turbulent state of the flow. This is why both are needed: the SGS dissipation being unable to
sustain density and pressure discontinuities. It is admitted, within the LES community, that
representative LES require high-order schemes [25]. Although Ghosal’s analysis seems to
disqualify second-order methods, it is worth noting that:

• Low order methods are common within applications in complex geometries, even
for LES applications (see [44], for example).
• The presented skew-symmetric schemes are centered in nature, hence non-dissipative.

Therefore the dissipation brought up by the model is effective. This fact will clearly appear
under Results.
• Aliasing and dispersion errors, although being the potential cause of low quality

results, cannot be responsible for the problems we will deal with. In that respect, the present
problem and the proposed improvements will certainly hold for the use of an higher-order
centered scheme.

Eventually, the form we adopt differs from the standard purely centered schemes by three
features:

• First, as suggested by the analysis of Swanson and Turkel [43], the previous type of
centered numerical method may be transformed into a TVD scheme by redefining the sensor
(13), considering a matrix dissipation model instead of a scalar one as described in Eqs. (8)
and (9), and setting the numberk(2) to a value switching from central to first-order upwind
scheme when second-order dissipation is activated. Although we keep a scalar dissipation
model, we take the valuek(2) equal to 1.5 which can be considered as large. As noticed
in [43], a typical value around 0.5 gives a global scheme close to a first-order upwind
scheme in the case of the scalar equation providedk(2)9 is equal to 0.5. For the presented
test case,9 values are typically around 0.15, which leads tok(2)9 ≈ 0.075 for standard
k(2)= 0.5. This produces good results for stationary problems (RANS approach) but can lead
to spurious oscillations in the shock region for the unsteady case. Empirically, we checked
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thatk(2)9 ≈ 0.25 (i.e., half the theoretical value recommended to get a true upwind scheme)
is sufficient to suppress the above mentionned oscillations. The corresponding value fork(2)

is 1.5. Following [43], this ensures a nearly TVD-like scheme in regions of sharp pressure
gradient, and therefore offers the possibility to capture shocks without spurious oscillation.
Fourth-order dissipation is used to damp high-frequency modes developing in all centered
schemes even in smooth regions of the fluid flow field [42, 43]. For the present study, the
valueε(4) can be set to zero for two reasons. The first is that possible oscillations are damped
by the LES model because they develop at small scales. The second reason is given below.
• Second, we detail some features of the chosen fluxes. Let us consider the non-linear

equation

∂U

∂t
+ ∂Uψ

∂x
= 0, (14)

ψ andU are scalars. The conservative discretization of the flux(FU )=Uψ involved in
Eq. (14) in a finite volume method based on collocated variables leads to the semi-discrete
equation

∂U

∂t
+ Fj+1/2− Fj−1/2

V = 0, (15)

whereFj+1/2 is the flux at the interfacej +1/2 between cellsj and j +1, equal toψU ·S,
Sbeing the normal at the cell surface. Using the mean value of the fluxes to evaluateFj+1/2,
one gets, in case of a regular mesh,

Fj+1/2 = 1

2
(U jψ j +U j+1ψ j+1) = 1

2
(Fj + Fj+1) (16)

Fj−1/2 = 1

2
(U j−1ψ j−1+U jψ j ) = 1

2
(Fj−1+ Fj ) (17)

Fj =U jψ j . The projection of Eq. (15) onx gives (withS · x/V =1−1
x )

∂U

∂t
+ U j+1ψ j+1−U j−1ψ j−1

21x
= 0, (18)

which is a semi-discrete equation of divergence form using a centered scheme of second-
order in space. When using the flux of the mean value, one gets

Fj+1/2 = F(U j+1/2) =
(

Uj +U j+1

2

)(
ψ j + ψ j+1

2

)
(19)

Fj−1/2 = F(U j−1/2) =
(

Uj−1+U j

2

)(
ψ j−1+ ψ j

2

)
(20)

which leads to

∂U

∂t
+ 1

2

(
U j+1ψ j+1−U j−1ψ j−1

21x

)
+ 1

2
U j

(
ψ j+1− ψ j−1

21x

)
+ 1

2
ψ j

(
U j+1−U j−1

21x

)
= 0, (21)
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which is a semi-discrete equation using a skew-symmetric form of second-order. This
form is known to reduce the aliasing errors that are crucial in low-order non-dissipative
schemes and is thus recommended for LES (see [26, 32]). As pointed out in [45, 26], the
skew-symmetric form is shown also to conserve kinetic energy for incompressible flows.
Another interesting point is that the skew-symmetric form of Eq. (21) is compatible with
the conservative discretization of Eq. (15), a property of crucial importance to ensure the
shock capturing capability of the scheme. The adaptation to compressible flows withρui u j

terms is made by settingU j (respectivelyψ j ) to ρ̄ũ j (respectively ¯ρũ j ) in the form (21),
the local fluxFj−1/2 of Eq. (20) being divided by the mean density ( ¯ρ j + ρ̄ j+1).
• Third, as suggested in many applications devoted to steady (see Swanson, and

Turkel [43] and Crumpton and Shaw [46]) or unsteady flow calculations (see Mittal [47])
there are strong motivations for reducing the second-order numerical dissipation used to
capture discontinuities. Among them, the problem of shock wave representation is one of the
strongest. Usual procedures to improve this dissipation rely either on a better mathematical
description of TVD properties of the scheme [43], or on possibilities of reducing the size of
the flow regions where dissipation acts: this is done in a very pragmatic way in fundamental
studies where the concept of local application of ENO schemes arises [6] or by adding a
correction to the sensor described in Eq. (9). Classical solutions are the use of a quantity
having the same functional dependence as entropy, or the multiplication of the scaling factor
by a monotonically increasing function of the local Mach number of the flow [43]. This
latter procedure has been extended by [46] who directly flagged what is defined as the
“shock region” before running every Runge–Kutta step: the flag is set to one in cells that
are crossed by the shock front and to zero elsewhere.

As stressed by one of the referees, the Jameson scheme is no longer Galilean invariant due
to the artificial viscosity, the range of values given for the coefficientsk(2), k(4) being thus
valid for the shock frame of reference. Moreover, with corrections based on the local Mach
number, the discretized set of equations contains a new source on non-Galilean invariance.
We developed a new correction which conserves the Galilean invariant property of the
sensor and exhibits a smooth correction, proportional to the level of local compressibility.
A modified version of the Jameson’s sensor was obtained by multiplying the standard sensor
9 of Eq. (12) by the local function8 defined by

8 = (∇ · u)2
(∇ · u)2+ (ω)2+ ε , (22)

whereω=∇∧ ũ is the resolved vorticity andε= 10−30 is a positive real number chosen
to prevent numerical divergence in regions where both∇ · u andω are zero. This function
varies between 0 for weakly compressible regions to about 1 in shock regions. The artificial
viscosity used with this “modified Jameson’s approach” is

ε
(2)
i+1/2 = k(2)Ri+1/29i+1/28i+1/2, (23)

where

9i+1/28i+1/2 = max(9i8i , 9i+18i+1), (24)

9i is given by Eqs. (13) and8i is simply a local evaluation of Eq. (22). Note that, even
though the8 sensor of Eq. (22) is Galilean invariant and may be used in other numerical
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formulations, its use with the Jameson scheme still leads to a non-Galilean invariant formu-
lation. Therefore, present results (for example, constantk(2)) should be extrapolated only
in frames where shocks are steady.

4. RESULTS

The following numerical tests enable comparisons between numerical models for un-
steady calculations of compressible flows, all of them involving the second-order finite
volume centered scheme in the skew-symmetric form of Section 3.

For all simulations presented below, a dedicated table recalls the resolution, the values
of the coefficientsk(2) andk(4), the choice of the sensor9 or89, and the eventual use of
the LES model (referred to as FSF for the previously mentioned LES modeling).

We present simulations for both infinite and finite Reynolds numbers. The Euler simu-
lations allow us to evaluate the numerical method in an inviscid case, all the dissipation
being brought either by the artificial viscosity or/and by the SGS model. Experimental data
of Comte-Bellot and Corrsin (CBC) were used for comparisons.

4.1. Homogeneous Compressible Turbulence

Models are first tested without shock in freely decaying homogeneous compressible
turbulence in a periodic square box. Nine simulations are performed for different com-
binations of numerical and subgrid scale dissipation models (Table I). For the first six
simulations (referred from THI-1 to THI-6), the initial condition consists in a divergence-
free velocity field, with uniform initial density and temperature fields. The energy of the
initial purely solenoidal velocity field is contained in the large resolved scales and peaks
up atki Lref= 3. For the three remaining simulations (referred from CBC-1 to CBC-3), the
initial conditions consist of a divergence-free velocity field with the same three-dimensional
energy spectrum as in the Comte-Bellot and Corrsin experiment at the stationtU0/M = 42
(see [48, 24]).

The resolution is low (323) but sufficient for the present goal. For the first four simulations,
the kinetic energy spectraE(k, t) fill up, showing transition to fully developed turbulence,

TABLE I

Parameters of Simulations for Three Dimensional Freely Decaying Isotropic

Turbulence in a Periodic Square Box Using 323 Mesh Nodes

Simulation FSF model k2 k4 Sensor

THI-1 Yes 0.0 0 No sensor
THI-2 Yes 1.5 0.02 9 (Eq.13)
THI-3 Yes 1.5 0 9

THI-4 Yes 1.5 0 89 (Eq. 24)
THI-5 No 0.0 0 No sensor
THI-6 No 1.5 0 89

CBC-1 Yes 0.0 0 No sensor
CBC-2 Yes 1.5 0 89

CBC-3 Yes 1.5 0.02 9

Note.THI-x refers to inviscid simulations: CBC-x refers to the Comte-Bellot and Corrsin
experiment (see Subsection 4.1).
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FIG. 1. Kinetic energy spectra for simulations THI-1, THI-2, THI-3, and THI-4, att = 10Lref/Uref and
t = 120Lref/Uref. For simulation THI-6, ak2 spectrum symptomatic of equipartition equilibrium develops.

as shown by the self-similar decay with a constant slope aroundk−2 for the spectra obtained
with the FSF model (simulation THI-1) (see Fig. 1). The simulation THI-5 diverges, showing
that the skew-symmetric form by itself is not sufficient to sustain such a simulation of
compressible turbulence. Notice that, as the skew-symmetric form of the convective term
is shown to conserve energy in the incompressible limit (see [45]), such a simulation would
be sustained for a truly incompressible regime. The spectrum for simulation THI-6 exhibits
ak2 shape, symptomatic of an equipartition equilibrium [40]: the second order dissipation
is able to prevent numerical divergence but not to play a role equivalent to a SGS model.
Figures 2 and 3 show the time evolutions over the whole domain of the mean kinetic energy
and enstrophy: all simulations with zero fourth-order dissipation exhibit an increase of
enstrophy up to a critical timet∗, close tot ≈ 15Uref/Lref. This time is of the order of
the critical time of “enstrophy blow up” (identified as a maximum on Fig. 3) discussed in
[40], t∗ ≈ 5.9( 1

2ω
2(0))−1/2, and in [49] for practical LES applications,t∗ ≈ 4( 1

2ω
2(0))−1/2.

These evaluations correspond to 28 and 19Uref/Lref in our case. The behaviour of energy
and enstrophy is anomalous for simulations THI-5 and THI-6, showing the necessity of the
LES model.

The first four simulations are continued untilt ≈ 10t∗. For timet > t∗, the mean kinetic
energy decreases with at−1.4 slope for simulations THI-1 to THI-4, in good agreement with
turbulence theories (see [40] for a review): this result is not very sensitive to the the nature of
the dissipation. Figure 4 shows the time evolution of the turbulent Mach number, pressure,
density, and temperature fluctuations (Prms, ρrms, Trms) for simulation THI-4. The turbulent
Mach number isMt ≈ 0, 13 for 0< t < t∗ and decreases down toMt ≈ 0.03 for t ≈ 10t∗.
After some oscillations due to initial conditions,Prms, ρrms, Trms decrease, showing that an
auto-similar state has been reached. The ratio

∫
V (div u)2 dV/

∫
V ω

2 dV varies from 0(t = 0)
to 0.02 for self-similar decay, showing that the turbulence is weakly compressible.
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FIG. 2. Time evolution of kinetic energy1V
∫
V

u2/2dV for simulations THI-1 to THI-6.

The results obtained in simulation THI-1 with the FSF model will now be taken as
reference for discussion.

The numerical scheme involving second- and fourth-order dissipation (simulation THI-2)
is clearly too dissipative: the kinetic energy level is reduced by more than a decade for scales

FIG. 3. Time evolution of enstrophy1V
∫
V
ω2 dV for simulations THI-1 to THI-6.
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FIG. 4. Time evolution of turbulent Mach number, pressure, temperature, and density fluctuations for simu-
lation THI-4.

of sizes about the cutoff length whereas the large scales are hardly affected (see discussion
in Section 5 and Fig. 1). No satisfactory evolution of energy and enstrophy is obtained. A
clear improvement of the results is obtained when setting the fourth-order coefficient to
zero (simulation THI-3); but even in this case the dissipation brought up by the classical
second order Jameson dissipation is large enough to perturb the role played by the subgrid
scale model. This is particularly obvious during the early time of evolution when kinetic
energy at the cutoffkc is negligible, and thus where the dissipation brought up by the FSF
model is nearly zero.

Although the numerical dissipation (O(2) and O(4)) is sometimes used as a subgrid-scale
model (it has indeed the same effects as a dissipative subgrid-scale model on the quantities
observed here), it always brings a spurious dissipation, too large when the fourth order is
employed and too weak when the second order alone is employed. In consequence, it is
not able to mimic the dissipation of a true subgrid-scale model, and therefore is not well
adapted to LES. This conclusion is similar to the one provided by Garnieret al. [50].

The application of modification (Eq. (22)) corrects these drawbacks and gives the same
results as the standard LES for simulation THI-4. Figure 5 shows the time evolution of
〈8〉= ∫V 8 dV, 〈9〉= ∫V 9 dV,8rms, 9rms and of the correlation coefficient of8 and9.
Although the mean values and fluctuations of the classical sensor9 decrease as expected
for a self-similar decay, the mean value and the fluctuations of the correction8 increase.
The global sensor89 is shown to be small, which seems to be not only due to the low
values of each component8 and9, but also due to their relatively weak correlation (see
Figs. 5 and 6).

The three remaining simulations concern the Comte-Bellot Corrsin experiment. The ini-
tial velocity fields were provided by the Center for Turbulence Research and are described
in [24]: they match the CBC experiment condition fort0U0/M = 42. The thermodynamic
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FIG. 5. Time evolution of mean andrmsvalues for8,9, their product89, and their correlation coefficient
for simulation THI-4.

FIG. 6. Scatterings of8 and9 for early (t = 6Uref/Lref) and equilibrium stages(t = 90Uref/Lref) for
simulation THI-4.
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FIG. 7. Time evolution of kinetic energy for simulations CBC-1, CBC-2, and CBC-3,t0= 42M/U0.

state is adapted to getMt to 0.26, which is in the range of the turbulent Mach number
considered by Moinet al.[24]. Figures 7 and 8 display the time evolution of kinetic energy,
normalized by its initial value and the kinetic energy spectra for a time that corresponds
to tU0/M = 98, i.e.,t/t0= 2.33. The simulation CBC-1 (see Table I for parameters) pro-
vides reasonable results: the error is about 20% on the energy prediction fort/t0= 4.07,

FIG. 8. Kinetic energy spectra for simulations CBC-1, CBC-2, and CBC-3 fortU0/M = 98.
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i.e., for the last station of CBC measurements.This result does not seem as good as the
ones obtained by Moinet al. [24] using the dynamic model, although the dynamic model
predicts an equilibrium value of the constant comparable to the value of Smagorinsky
constant obtained using isotropic turbulence [24]. Considering the simulation CBC-1 as
reference, the simulations CBC-2 and CBC-3 show that the proposed modification is able
to maintain similar results (CBC-2) whereas the original Jameson scheme is not (CBC-3).
The discrepancy between the CBC-1 and CBC-2 results is larger than between THI-1 and
THI-4: this seems due to the higher turbulent Mach number for the CBC cases. Although
this could be seen as a limitation of the proposed numerical method, turbulent Mach num-
bers around 0.25 are already representative of a wide range of applications for aeronautical
purposes.

4.2. Two Dimensional Vortex-Shock Interaction

The effect of the proposed correction near a shock is now investigated by simulating the
2D interaction of a vortex and a shock in a configuration described in Fig. 9: the mean
flow is in thex-direction; periodic boundary conditions are applied in they-direction. The
purpose of this test case is to compare the numerical results with simple analytical models
of vortex amplification through the shock [8]: the main advantages of the 2D configura-
tion being the lack of vortex stretching. The dimensions of the computational domain are
(Lx, L y)= (4, 1)Lref; att = 0, a Lamb–Oseen type vortex is centered at(x, y)= (1, 0.5)Lref

and is convected by the mean flow (see Lamb [51, p. 592]).
Nine simulations are conducted. For the first six, the upstream Mach number isM1= 1.2

to match the simulation of Leeet al.[7]: this corresponds to an inlet velocity ofU1= 1.42Uref.
The maximum tangential velocity is 0.16Uref, which can stand for a relatively high level of

FIG. 9. The 2D shock/turbulence interaction.Top, sketch of the simulation;middle, initial condition (Lamb–
Oseen vortex); iso-lines of vorticity and pressure show the respective positions of the vortex and the shock.Bottom,
the same lines show the modifications of shape of both vortex and shock contours (see Subsection 4.2).
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TABLE II

Parameters of Simulations for the Two Dimensional Vortex/Shock

Interaction (See Subsection 4.2)

Simulation (nx, ny) k2 k4 Ny Sensor FSF model

VS-1 128× 16 1.5 0.02 8 9 No
VS-2 256× 32 1.5 0.02 16 9 No
VS-3 512× 64 1.5 0.02 32 9 No
VS-4 128× 16 1.5 0 8 89 No
VS-5 256× 32 1.5 0 16 89 No
VS-6 512× 64 1.5 0 32 89 No

Note.The resolutions are referred to as resolution 1 (respectively 2, 3) for 128× 16 (respec-
tively 256× 32, 512× 64). The fifth columnNy indicates the number of points in the vortex
in the y-direction; twice as many points are used in thex-direction.

equivalent turbulent Mach number. The parameters of these simulations are given in Table II
where we use either the classical Jameson’s dissipation (second- and fourth-order dissipa-
tion) or the modified Jameson one, for three different resolutions: for all simulations, the
subgrid scale model is switched off. The number of points involved in the numerical de-
scription of the vortex is given for they-direction: twice as many points are used in the
x-direction to resolve the vortex. Three other simulations are conducted using the parameters
of simulations VS-6, but with various inlet Mach numbers(M1= 1.1, 1.4, and 1.7) in order
to check the sensitivity to upstream flow.

All simulations (and the ones presented in the next section) are performed in the frame
of the shock: the shock, originally placed atx= Lx/2, is thus at rest in this frame and its
mean position does not change for the present laminar calculation.

Figure 9 displays isolines of pressure and vorticity during the interaction for simula-
tion VS-4. After the shock, the vortex becomes elliptic, which is in agreement with LIA
predictions [4] and other numerical results [52].

Figure 10 gives the time evolution of the maximum of
√
ω2(t)/ω2(0) on the domain for

all simulations of Table II. The expected results are a constant value before the shock-vortex
interaction, an increase during the interaction and another constant level when the vortex
is in the post-shock region. As stressed in Maheshet al. [8] for incidence angles near zero,
this quantity is supposed to scale as

ω2

ω1
≈ ρ2

ρ1
= U1

U2
, (25)

ω2 (respectivelyω1) standing for post- (respectively pre-) shock position of the vortex.
Additional tests at higher Mach numbers using the modified sensor are presented in Fig. 11.
Expected results are qualitatively and quantitatively recovered in all cases. However, two
phenomena are worth noting.

The first concerns pre- and post-shock regions, where only the fourth-order dissipation of
the classical Jameson’s dissipation is supposed to act. A decrease of enstrophy is observed
in the pre-shock and/or post-shock regions for the simulations VS-1 and VS-2, showing
the influence of the fourth-order dissipation as in the previous section. Simulations VS-3
and VS-6 show that well resolved scales are not affected by the fourth-order dissipation.
Moreover, the distortion of the vortex in post-shock regions makes the pressure gradient
steeper and enables the sensor of the classical second-order Jameson’s dissipation to bring a
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FIG. 10. Time evolution of the maximum of
√
ω2(t)/ω2(0) for the 2D shock/vortex interaction; long dashed

line, simulation VS-1; doted line, simulation VS-2; dot-dashed line, simulation VS-3;4, simulation VS-4;♦,
simulation VS-5;©, simulation VS-6.

larger dissipation than for the pre-shock region (simulation VS-2). For all cases, the proposed
correction maintains a plateau for enstrophy in both the pre- and post-shock regions.

Second, the enstrophy growth through the shock is captured more precisely with increas-
ing resolution and for a fixed resolution when applying the89 sensor. As previously

FIG. 11. Time evolution of the maximum of
√
ω2(t)/ω2(0) for parameters of simulation VS-6 forM1= 1.1,

1.2, 1.4, 1.7. The curves have been displaced so that the dates of the shock/vortex interaction coincide for all Mach
numbers.



534 DUCROS ET AL.

underlined, an increased number of points results in steeper gradients and thus a larger
production of enstrophy; this fact is already investigated in [7]. The sensor89 increases
this trend. Simulations confirm these conclusions for Mach numbers ranging from 1.1
to 1.7.

4.3. The 3D Shock-Turbulence Interaction

4.3.1. Parameters

The previous schemes are now tested in the case of the interaction between a weak com-
pressible turbulence and a shock. The mean flow is in thex-direction; periodic boundary
conditions are applied in they- and z-directions. The configuration of the simulation is
described in Fig. 12 and is similar to the one treated in [7] except for the fact that the
incident turbulence is not prescribed at the inlet through an adapted procedure for which the
spectrum is given [53] but through the direct input of LES fields obtained in Subsection 4.1
and the use of Taylor’s hypothesis: the same choice has been made by [8]. An extensive
study of the validity of Taylor’s hypothesis for compressible flow is proposed in [53]. This
hypothesis is shown to be valid for the case treated here since the inlet turbulent Mach
numberMt is about 0.075 and the inlet turbulence intensity is low(

√
q/U1≈ 0.06). The di-

mensions of the calculation domain are(Lx, L y, Lz)= (2, 1, 1)Lref. The smallest resolved
kinetic energy scale of the incident turbulence is thusLuvw = Lref/16 (see Section 2). The
resolution is(ny, nz)= (32, 32) points in both they- andz-directions to match the reso-
lution of the previous isotropic turbulence simulation. Three resolutions are used in thex
direction: the first is 64 points (which gives an isotropic griddx= dy= dz= Lref/32; it is
referred to as resolution 1, used for simulations ST-1 and ST-2). For simulations ST-3, 4, 5,
thex discretization is equivalent to the previous one for the inlet, then smoothly refined up
to dx(i )≈ 1/8(Lref/32) just before the shock and for the rest of the domain (simulations
ST-3, 4), or only in a region around the shock (simulation ST-5). For the chosen grid refine-
ment, the ratio between the integral scale of the incoming turbulence and the mesh size in
the shock region is about half of the ratio between the vortex and the width of the mesh for
the resolution 3 of the previous 2D cases (see Fig. 13). This suggests that the mesh for cases
ST-3, 4, 5 is sufficient to describe properly the interaction of the more energetic structures

FIG. 12. Schematic diagram of the computational domain for simulations ST-1 to ST-5. Periodic conditions
are applied in they- andz-directions (see Subsection 4.3).
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FIG. 13. x distribution of the cell sizesdx, dy, and dz in the x-, y-, and z-directions for simulations
ST-1, 2, 3, 4, 5. A dashed line marksdy anddz for all simulations;2, dx for resolution 1 (simulations ST-1
and ST-2),©, dx for resolution 2 (simulations ST-3 and ST-4),4, dx for resolution 3 (simulation ST-5). The
vertical line denotes the initial shock position.

with the shock, at least with the same accuracy as for the shock/vortex interaction previously
treated. This refinement is close to the solution used by [54] to recover DNS results with a
shock capturing technique. The parameters are summarized in Table III: for all simulations,
the FSF model is switched on. The problems of LES formulation on variable meshes were
neglected in the present work, which seems reasonable regarding the global order of our
numerical method and the low stretching of the mesh [55]. However, independently of the
problem of commutativity between filter and space derivatives, the strong change of cutoff
length in thex direction will have a crucial effect on the dynamic on vorticity dynamics (see
below).

The procedure to obtain statistics was inspired by the work of [53] and has been adapted
to LES fields, for which we forget the notation devoted to resolved motion:f stands now

TABLE III

Parameters of Simulations for the Three Dimensional Shock/Turbulence

Interaction (See Subsection 4.3)

Simulation (nx, ny, nz) Grid k2 k4 Sensor FSF model

ST-1 64× 32× 32 Isotropic 1.5 0.02 9 Yes
ST-2 64× 32× 32 Isotropic 1.5 0 89 Yes
ST-3 262× 32× 32 Locally refined 1.5 0.02 9 Yes
ST-4 262× 32× 32 Locally refined 1.5 0 89 Yes
ST-5 156× 32× 32 Locally refined 1.5 0 89 Yes

Note.The resolutions are referred to as resolution 1 (respectively 2, 3) for 64× 32× 32 (respectively
262× 32× 32 and 156× 32× 32).
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for f̃ or and ˜ being reserved for spatial and time averages:

f̄ (x) =
∫

Ly

∫
Lz

∫
T

f (x, y, z, t) dt dz dy, f̃ (x) = ρ(x, y, z, t) f (x, y, z, t)

ρ(x, y, z, t)
(26)

and

f ′(x, y, z, t) = f (x, y, z, t)− f̄ (x), f ′′(x, y, z, t) = f (x, y, z, t)− f̃ (x). (27)

Mean streamwise fluctuations are then defined in a logical mannerf̄ ′(x), f̄ ′′(x), etc. Once
a stationary state is reached, time sampling is performed over 12Lref/Uref for simulations
ST-1, ST-2, and ST-5 and over 5Lref/Uref for simulations ST-3 and ST-4.

4.3.2. Mean Flow Variables

Figures 14 and 15 show the distribution of the mean streamwise velocity, pressure,
and Mach number through the shock. As noticed in [56], mean variables obey modified
Rankine–Hugoniot jump conditions. The downstream values of the variables obtained in the
turbulent case undergo slight over- or undershoots depending on the variables downstream to
the shock before relaxing to the laminar values. This fact is more pronounced for resolution
2 where the reduced grid spacing allows a more accurate description of the thermodynamic
fluctuations and the rise of steeper gradients: this fact will be discussed below.

4.3.3. Turbulent Kinetic Energy, Mach Number, and Reynolds Stresses

Let us define the Reynolds stress tensor by

Ri j (x, y, z, t) = ũ′′i u′′j =
ρu′′i u′′j
ρ̄

. (28)

The turbulence kinetic energy is then defined byE(x, y, z, t)= (1/2)(R11+ R22+ R33),
its mean streamwise value bȳE(x). Figures 16 and 17 show the evolution of the normal-
ized turbulence kinetic energy and of the turbulent Mach number for some simulations of
Table III. As expected from the previous results obtained in freely decaying turbulence,
only the modified89 sensor is able to predict a correct decay of turbulence kinetic en-
ergy for the pre-shock region, and this independently of the resolution in thex-direction.
The streamwise decrease of kinetic energy is compatible with the one found for homoge-
neous turbulence when using Taylor’s hypothesis (simulations ST-2 and ST-4). The standard
Jameson’s artificial viscosity exhibits a spurious dissipation (simulations ST-1 and ST-3).
The production ofĒ(x) is larger in both the shock and the post-shock regions for resolution
2 than for resolution 1.

The evolution of the turbulent Mach number exhibits the same trends:Mt decreases
from Mt ≈ 0.075 at the inlet toMt between 0.061 (simulations ST-1 and ST-3) and 0.068
(simulations ST-2 and ST-4) just before the shock.

As observed in previous studies (see [6, 7, 13]), the isotropic flow becomes axisym-
metric through the shock. This is shown by the streamwise distribution of the Reynolds
stresses̃Rii (x), obtained with the modified Jameson’s sensor (simulations ST-2 and ST-4,
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FIG. 14. x distribution of mean steamwise velocityũ (top) and mean pressurēp (bottom) across the shock
wave for simulations ST-1, ST-2, and ST-4; dashed lines denote the laminar values satisfying Rankine–Hugoniot
jump conditions;2, simulation ST-1;©, simulation ST-2;♦, simulation ST-4.

see Fig. 18): these results compare well with previously mentioned works. A quantita-
tive comparison for the intensity of the Reynolds stresses in the far field is proposed in
Table IV: LIA results are estimated from Leeet al. [54]. The present results cover the in-
crease of Reynolds stresses arising between the pre-shock region andx≈ 1.4 (distant from

TABLE IV

Reynolds Stresses Growth through the Shock

Lee’s (93) LIA ST-2 ST-4 ST-5

A 19% 34% 25% 37% 41%
B 4.4% 10% 0% 6% 6%

Note. A= R11(post-shock)/R11(pre-shock), B= R22(post-shock)/R22(pre-shock).
Results of Leeet al.are estimated from Fig. 5 of [7]; LIA predictions are estimated
from Fig. 4 of [7] for far field.
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FIG. 15. Thex distribution of mean Mach number for simulations ST-1, ST-2, and ST-4 with the same legend
as the previous figure.

the shock from approximatively one integral length-scale of the incident turbulence). Al-
though LIA predictions are to be considered with care since the composition of the incident
turbulence is able to influence the results [8], presented results (for ST-4 and ST-5) agree well
with previous ones, ST-2 results being clearly of lower quality. Lower predictions obtained
using DNS may be due to viscosity effects; such effects have been reported by Leeet al.[6].

FIG. 16. Thex distribution of normalized turbulence kinetic energyE(x)/E(0) for stimulations ST-1–4.
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FIG. 17. Thex distribution of turbulent Mach number̄Mt for simulations ST–1, 2, 4.

Lee et al. [7] investigate the budget of the mean kinetic energy equation and show
that the pressure work and the viscous terms are the main contributors to the evolution
of kinetic energy outside the shock wave: as the Reynolds number is set to infinity, only
the subgrid-scale modeling and the artificial dissipation can contribute to dissipation. The
larger increase obtained with the89 sensor and the refined mesh (simulations ST-4 and

FIG. 18. Thex distribution of normalized Reynolds stressesR̃ii (x)/R̃ii (0) for stimulations ST-2, 4, 5.
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ST-5) confirms the weak dissipative properties of the present numerical method used in
combination with grid refinement. Indeed the same numerical method used without grid
refinement exhibits a weaker increase of Reynolds stresses behind the shock and leads to
a non-physical behaviour:R22 peaks before the minimum value ofR11 both in the results
of [7] and in the present results obtained with the refined mesh (simulations ST-4, 5). This
is no longer true using the coarse grid (see Fig. 18, simulation ST-2). The present results
confirm that grid refinement leads to a proper description of pressure work and a limited
dissipation.

4.3.4. Vorticity

Figures 19 and 20 display the streamwise distribution of normalized vorticity fluctuations
ω′2x (x)/ω′2x (0) andω′2z (x)/ω′2z (0). As already mentioned, the standard sensor used to trigger
Jameson’s dissipation predicts a spurious decay of vorticity, even before the shock region.
This non-physical behaviour is corrected by means of the89 sensor. Although previous
studies (LIA and DNS results) suggest that the streamwise componentω′2x is hardly affected
across the shock, this tendency is recovered only for simulations ST-1, 3, 4, 5 and not for
ST-2: the use of modified Jameson’s dissipation together with a non-refined mesh exhibits
a decrease ofω′2x through the shock. The amplification of the transverse componentω′2z is
predicted with different intensities for all simulations (85% for ST-4, 80% for ST-5, from 60
to 80% depending on the incident turbulent Reynolds numbers for [6], and around 80% for
LIA prediction extrapolated from Fig. 8 of [6]). This is compatible with the results of Lee
et al. [6]. Although the dynamic of enstrophy does not follow the same rules for 3D cases
as in 2D cases, it may be underlined that the registered vorticity increase approximately
scales on the density ratio for this low Mach number case. In the present LES, coarse grid
results suggest that no grid refinement leads to a monotonic decay of both transverse and

FIG. 19. The x distribution of normalized fluctuations vorticity component ¯ω2
x(x)/ω̄

2
x(0) for simulations

ST-1–5.
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FIG. 20. The x distribution of normalized fluctuations vorticity component ¯ω2
z(x)/ω̄

2
z(0) for simulations

ST-1–5.

streamwise components and to erroneous results through the shock. The simulation ST-5 is
able to produce correct results through the shock together with a more or less monotonic
decay of vorticity components. This is no longer the case for the resolution 2 (simulations
ST- 3 and ST-4), for which both streamwise and transverse components of vorticity increase.
Although the method used to refine the grid around the shock region is not unique and may
change the result, this suggests that the convection of very high Reynolds number (in fact
infinite) turbulence from an isotropic to an anisotropic more refined grid is responsible for
the enstrophy increase far from the shock. This allows energy to cascade from the cutoff
wavenumberkc1≈ 32/Lref to kc2≈ 8∗32/Lref and induces an increase of enstrophy, which
is not connected with the present shock interaction problem but is related to turbulence
dynamics (see Subsection 4.1). This phenomenon seems more intense for they and z
components as the mesh refinement is acting directly on them (through∂/∂x), whereas
little effect is seen for thex component (∂/∂y and∂/∂z are unchanged even in the refined
meshes.)

4.4. A Posteriori Test on the Modified Sensor

Figures 21 and 22 show the streamwise evolution of the components of the correction (8,
Eq. (22)) applied to the standard Jameson sensor9. The analysis deals with the fields ob-
tained from simulations ST-2 and ST-4. The hypothesis of weakly compressible turbulence
is clearly supported by the low level of dilatation compared to enstrophy. As mentioned,
the level of enstrophy in the post-shock region is larger for resolution 2 (simulation ST-4).
The width of the region covered by the non-zero dilatation field is to be connected with the
instantaneous corrugation of the shock and with the slow drift of the mean shock position
[6]. Moreover, the larger prediction of the dilatation for resolution 2 may be due to a steeper
shock.
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FIG. 21. The x distribution of the components ¯ω2(x) and (divu)2(x) of the correction8 applied to the
Jameson’s standard sensor9 for simulations ST-2 and ST-4 (log-linear plot).

Figure 23 provides three isosurfaces of the instantaneous correction8 obtained for the
simulation ST-2. The lowest level chosen for8 selects small scales and theoretically allows
some dissipation: however, the weak level of correlation between8 and9 away from shock
regions (see Subsection 4.1) leads to low values of89 and strongly limits second-order

FIG. 22. Thex distribution of the correction̄8(x) applied to the Jameson’s standard sensor for simulations
ST-2 and ST-4.
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FIG. 23. Instantaneous isosurfaces of8 taken for simulation ST-2.8= 0.1 (top),8= 0.5 (medium), and
8= 0.8 (bottom). The mean flow goes from front to the rear.

dissipation. The selection of higher values (8= 0.5 and8= 0.8) shows the ability of the
sensor to select the shock region and even to reduce the standard Jameson sensor value
(there are some holes in the isosurface8= 0.8).

Figure 24 compares the standard subgrid scale dissipation acting on kinetic energy
(εsgs= − τi j S̃i j ) to the second-order dissipation with and without correction8. The fourth-
order dissipation has not been used here. The whole domain can be split into two parts: the
first one is the non-shocked regions whereεsgsdominates but where the dissipation coming
from the standard second-order can be non-negligible (around 10%). The proposed cor-
rection is able to get rid of this problem and sets the second-order dissipation contribution
to a negligible level in such regions. These conclusions hold for regions where the grid
is refined. The second part consists of the shocked region whereεsgs is dominated by the
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FIG. 24. Thex distribution of kinetic energy dissipation coming from both subgrid scale modelingεsgs and
artificial viscosity with and without modified sensor (taken from simulations ST-2 and ST-5).

numerical dissipation, leading to a weak influence of the subgrid scale modeling in such
regions, at least for the numerical scheme used here.

5. DISCUSSION

The previous results can be used to explain the role of the different dissipations involved
in these simulations.

1. Fourth-order dissipation. In the region out of the shock, the only dissipation is pro-
vided either by the subgrid scale modelνt , or by the second and/or the fourth-order term
of Jameson’s dissipation, depending on the use of the correction (22). Assuming that the
dissipative operators take the same form for compressible and incompressible flows, we
now consider an equivalent incompressible flow, for which the equation of conservation of
kinetic energy in spectral space reads, for the present numerical method,(

∂

∂t
+ 2νt k

2+ 2ε(2)k2+ 2ε(4)
k4

k2
c

)
Ē(k, t) = Tk<kc(k, t). (29)

Tk〈kc(k, t) stands for the triple-velocity correlation coming from resolved non-linear in-
teractions (see [40], for example). A more adapted equation for kinetic energy in spectral
space can be found in [30] for compressible flows but it leads to the same discussion. The
dissipation acts likeνt k2E(k, t), ε(2)k2E(k, t), andε(4)k4E(k, t), which explains why the
use of the fourth-order dissipation is so crucial for small scales damping and can rapidly
lead to an over-dissipative behaviour when the coefficient is a priori fixed as it is the case
for Jameson’s artificial dissipation. An interpretation of high-order dissipative operators in
terms of subgrid scale modeling is proposed by [39] within the formulation in physical
space of a spectral eddy viscosity accounting for a cusp behaviour nearkc.
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2. Standard Jameson’s dissipation.The use of an arbitrary dissipative numerical method
(the standard Jameson’s artificial viscosity for the present study) can lead to a fairly good
picture of the flow (increase of energy, of transverse vorticity fluctuations and continuity of
streamwise vorticity fluctuations through the shock). But this picture is not correct far from
the shock where the large artificial dissipation affects turbulence more than the subgrid scale
model, leading to a wrong prediction of kinetic energy dissipation, as shown by simulation
ST-1 and as confirmed by a priori testing.

3. Modified Jameson’s dissipation on uniform mesh.The use of the sensor89 to
recover a reliable prediction of kinetic energy decay of turbulence out of the shock leads
to better results but may encounter some anomalous reduction of the streamwise vorticity
component through the shock (see Fig. 19).

This may be explained by the numerical treatment of the different scales involved in this
flow: the relevant physical scales are the turbulent scales and the scaleλ that character-
izes the width of the shock. Turbulent scales extend from large scales (size aboutLref/3
for all simulations) to the smallest resolved ones of size L⁄ uvw(x) (see Section 2). In the
shock region, the dominant dissipation is provided by the second-order term of Jameson’s
dissipation, which enables us to capture the shock within typically three points, leading
to λ≈1c for simulations ST-1 and ST-2. Consequently, for all simulations allowing the
smallest resolved energetic scalesLuvw of size about1c to reach the shock region, the
second-order dissipation acting on scales of sizeλ will affect the flow: this leads to lower
increase of kinetic energy,Rii , ω′2z components and to a reduction of the streamwise vor-
ticity component through the shock. This is the case for the simulation ST-2, for which
Luvw ∼ λ≈1c≈ Lref/16.

The other simulations (ST-1, 3, 4, 5) do not allow this to happen because the size of the
smallest incident turbulent structures is larger than the width of the shock for all of them.

For simulation ST-1, the use of a standard Jameson’s dissipation induces a strong non-
physical reduction of the kinetic energy at small scales before reaching the shock region.
We have seen that the reduction of the kinetic energy for the scales of size about1c is
more than a decade when compared to simulations performed with the modified sensor
(see Subsection 4.1). Consequently, the second-order dissipation acts slightly on small
resolved energetic scales in the pre-shock region. Figure 25 displays a cut of instantaneous
streamwise and transverse components of vorticity for simulation ST-1: nearly no change
in size and intensity of the scales is visible for the two components. The size of the smallest
scales is clearly larger than the width of the shock. This simulation contains only weakly
energetic small scales near the cutoff length scale1c.

4. Modified Jameson’s dissipation on refined mesh.Figure 26 displays the same vari-
ables as Fig. 25 for simulation ST-4: only a little change of intensity can be seen for theωx

component whereas the intensity ofωz increases through the shock and some structures of
smaller scales appear in the post-shock region.

Simulation ST-4 benefits from a grid refinement that allows a “numerical” separation
between the smallest resolved scales of the turbulent motion(L⁄ uvw ≈ Lref/16) and the
width of the local shock (λ≈ 3dx(x)≈ 3/(8∗ 32)Lref). This leads first to limited damping
of the smallest scales through the shock and second to a larger increase of vorticity, due to
the occurrence of steeper gradients.

A final important point may be made when discussing the solution adopted for simulations
ST-4, 5. Indeed, the previous separation of scale is clearly due to the fact that the grid



FIG. 25. Instantaneous cut of the streamwiseωx (top) and of the transverseωz (bottom) vorticity field for
simulation ST-1. Isopressure lines show the instantaneous position of the shock. Mean flow goes from left to right.

FIG. 26. Instantaneous cut of the streamwiseωx (top) and of the transverseωz (bottom) vorticity field for
simulation ST-4. Isopressure lines show the instantaneous position of the shock. The mean flow goes from left to
right.
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refinement takes place just before the shocked region, in a location that does not allow enough
time for the convected turbulence to modify the range of scales contained in the turbulent
motion. Should the grid refinement take place sooner, then the energy would cascade to
smaller scales and cover all the spectrum available. This would generate enstrophy, following
the same mechanism as the one seen in Subsection 4.1 and for the post-shock region in
simulation ST-4. This effect is all the more intense here as the Reynolds number is infinite,
but the same tendency is to be expected from all high Reynolds number applications. Two
general procedures may improve the method: the first is the use of local automatic mesh
refinement procedures (which would produce a quality of results equivalent to the ones
obtained with ST-5) and the second is the use of pre-filtering procedures for LES. When
pre-filtering the resolved fields to a chosen cut-off length scale larger than the characteristic
width of the shock, no energetic scales of size about the width of the shock can enter the
shock region and be dissipated by the second-order artificial viscosity.

6. CONCLUSION

We investigated the problem of high Reynolds number large-eddy simulations of the
shock/turbulence interaction.

A skew-symmetric form of a finite volume Jameson type scheme of second-order accuracy
was given. As the second- and fourth-order artificial dissipation terms involved in this type
of schemes are too large to be applied with success for LES, the fourth-order artificial
dissipation was suppressed (the LES model being able to get rid of small scales oscillations)
and a new sensor based on the local property of compressibility of the flow was constructed.

This sensor allows the global scheme to capture the shock and to predict a right decay
of turbulence kinetic energy in regions out of the shock. Moreover, the proposed sensor
is shown to be frame independent, easy to implement in a parallel code, and relatively
costless.

From a physical point of view, the simulations show the same trends as already published
results for moderate Reynolds numbers. From a quantitative point of view, the increase
of Reynolds stresses and vorticity fluctuations is slightly higher in our case than in former
published results, which may be due to the absence of molecular viscosity and to the reduced
numerical dissipation.

The necessity of grid refinement, already employed by [6], is shown to be directly con-
nected with the ability to separate the smallest resolved scales of turbulence and the scales
affected by the numerical dissipation used to capture the shock. This highlights the problem
of simulating shock/turbulence interactions with energetic scales of sizes up to the cut-off
length of the meshLuvw without encountering the problem of local decrease of the com-
ponent of vorticity normal to the shock. This conclusion is taken from simulations using
second order methods and may be modified when using higher order numerical schemes
allowing a more accurate description of smallest resolved scales and shock corrugation.
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